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Helical integral membrane proteins share several structural

determinants that are widely conserved across their universe.

The discovery of common motifs has furthered our

understanding of the features that are important to stability in

the membrane environment, while simultaneously providing

clues about proteins that lack high-resolution structures. Motif

analysis also helps to target mutagenesis studies, and other

experimental and computational work. Three types of

transmembrane motifs have recently seen interesting

developments: the GxxxG motif and its like; polar and

hydrogen bonding motifs; and proline motifs.
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Introduction
Membrane proteins are of critical importance to nearly

every aspect of cell physiology, comprising one-quarter to

one-third of all proteins [1]. To date, two distinct classes

of membrane proteins have been structurally character-

ized. The all-b class of protein tends to form large

transmembrane (TM) pores; many are toxins, whereas

others facilitate the diffusion of small to large molecules

across membranes [2]. The larger, a-helical class includes

cell-surface receptors, ion channels, transporters and

redox proteins of widely different structure and function.

Many have a single TM helix that homo-oligomerizes or

associates with other TM helices to form helical bundles.
iencedirect.com
These TM assemblies are of critical importance in a

variety of biological situations and also have particular

advantages for the study of protein folding in membranes.

They will be the primary focus of this review.

Popot and Engelman [3,4] have proposed a simple two-

stage model for the folding of a-helical membrane pro-

teins. In the first step, helices are formed and inserted into

the membrane. In the second key step (or series of steps

[5]), the helices come together and associate into the final,

folded structure. The process of inserting TM helices is

becoming increasingly better understood [6,7], but our

comprehension of the subsequent folding step is just

developing. Here, we review recent findings concerning

the recognition of motifs involved in helix–helix associa-

tion within membranes, the contributions of these motifs

to the thermodynamics of membrane folding, and motif

involvement in membrane protein assembly and func-

tion. These studies have led to a deeper understanding of

a variety of biological processes, while also providing a

toolkit for probing them further.

What are the features that stabilize the folded conforma-

tions of membrane proteins? An emerging answer to this

question is that the primary determinants are relatively

weak van der Waals packing and occasional hydrogen

bonding or electrostatic interaction. An early study by

Rees and Eisenberg [8] showed the interiors of mem-

brane-soluble proteins to be similar in packing and polar-

ity to those of water-soluble proteins [8]. More recent

surveys of the growing database of high-resolution struc-

tures of membrane proteins have provided additional

detail [9–15]. The solvent-inaccessible cores of both

types of proteins predominantly consist of well-packed

apolar residues. Although buried polar sidechains are

hardly rare in the cores of either membrane proteins or

water-soluble proteins, they do occur there less fre-

quently than apolar residues. Typically, membrane pro-

teins have at least one interhelical hydrogen bond per

helix [10]. Membrane proteins show a slightly greater

number of right-handed crossing angles compared to

water-soluble proteins and membrane proteins have a

greater tendency to bury small sidechains (alanine, gly-

cine and serine) at helix–helix interfaces [9,16]. Of parti-

cular importance in membrane proteins are Ca to amide

carbonyl hydrogen bonds [17,18], which will be discussed

in the section on glycine patches.

Although these database studies are not controversial,

their interpretation is less than straightforward. At one

end of the spectrum would be the view that the folding of
Current Opinion in Structural Biology 2004, 14:465–479
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helical membrane proteins can be driven by van der

Waals interactions alone [19]. The other view is that,

because hydrogen bonding is so much stronger in the

membrane, such bonds could be the primary factor in TM

helix association, with the packing interfaces playing

primarily a permissive role [17,20]. Of course, these

two views represent limiting cases, which may, in fact,

be found in some proteins. The issue is fundamentally a

quantitative one and can be addressed through detailed

thermodynamic studies of systematically mutated mem-

brane proteins, as will be discussed in the final section.

GxxxG and GxxxG-like motifs in
helix–helix association
GxxxG in glycophorin A

The GxxxG motif (two glycine residues separated by any

three residues) and ‘GxxxG-like’ motifs (in which one or

both glycine residues are substituted by other small

residues, such as alanine or serine) are often found to

be important for mediating the interaction of TM helices.

The discovery and characterization of the GxxxG motif

were, in a large part, a result of the work of the Engelman

laboratory at Yale. Early studies on the glycophorin A

(GpA) TM dimer, including mutagenesis [21], computa-

tional modeling [22–24] and thermodynamic character-

ization [25–29], showed the central role of GxxxG in the

L75IxxGVxxGVxxT87 interfacial motif (Figure 1a). In the

NMR structure of GpA [30], the groove of the GxxxG

motif and the ridge of the neighboring valine residues

form a large and almost flat central contact surface of the

dimer. The right-handed crossing angle about this pivot

point appears to be constrained by lateral contact of the

terminal Leu75, Ile76 and Thr87 residues.

GxxxG as a framework for transmembrane

helix association

The GxxxG motif has a strong propensity for TM helix

interaction [31]. Sequence analysis shows that GxxxG-

like motifs occur more frequently in TM helices than

their random expectation [32,33] and are conserved

among families [1]. Glycine and, to a lesser extent,

alanine and serine residues allow very close contact

between TM helices. This proximity permits extensive

interhelical van der Waals interactions [16,34]. The

strength of the interaction may be increased when the

motif is associated with nearby b-branched residues. This

is the case in GpA, which undergoes minimal loss of

entropy in the sidechain x1 distribution when folding

[34,35]. Intimate backbone contact between the helices

also favors the formation of networks of weak Ca-H � � �O

hydrogen bonds, which may add stability and/or specifi-

city to the interaction [17]. As recently reviewed [20], the

GxxxG motif may confer both stability and structural

plasticity, as in the Ca2+-ATPase, where the motif is at

the pivot point of the structural rearrangement observed

upon Ca2+ dissociation [36]. In the following section, we

will cover recent reports showing the involvement of
Current Opinion in Structural Biology 2004, 14:465–479
GxxxG-like motifs in a variety of protein families, includ-

ing signal transduction proteins, channels, transporters,

toxins and enzymes. Next, we will review the current

debate on whether networks of weak Ca-H � � �O hydro-

gen bonds provide stability in TM helix association.

Biological examples of GxxxG-like motifs
ErbB receptor

The members of the ErbB family of growth factor recep-

tor tyrosine kinases (ErbB1 or EGF; ErbB2 or HER2 or

Neu; ErbB3 or HER3; ErbB4 or HER4) play a funda-

mental role in proliferation and differentiation, and are

implicated in many types of cancers. These receptors

have a single TM domain with two conserved GxxxG-like

motifs at their N- and C-terminal ends. Some of the

instances of the motif play a role in the homodimerization

of the receptors [37]. Very recently, Shai and co-workers

[38] have demonstrated that one of the ‘orphan’ interac-

tion motifs, the N-terminal motif of ErbB1, is important

for heterodimerization with ErbB2, displacing the homo-

dimeric form of the second. They used an assay based on

Langosch’s ToxR assay [39] and determined heterodi-

meric interactions by competition, detecting the dose-

dependent dominant negative effect of synthetic pep-

tides added to the bacterial culture. Therefore, ErbB1 has

two instances of the GxxxG-like motif, one for homo-

dimerization and the other for heterodimerization.

APH-1

APH-1 is a multispan integral membrane protein that

participates in the g-secretase complex and is essential

for notch/glp-1 signal transduction in development.

The fourth TM domain of APH-1 contains a conserved

GxxxG tandem repeat (GxxxGxxxG). Lee et al. [40]

have determined that these three glycines are important

for the stable association of APH-1 in the g-secretase

complex.

F0F1-ATP synthase

F0F1-ATP synthase is the enzyme that produces ATP in

the mitochondrial membrane. Arselin et al. [41] reported

that a GxxxG motif in the single TM helix of subunit e is

critical for oligomerization of F0F1-ATP synthase. Muta-

genesis followed by native gel analysis showed that

glycine to leucine mutants have a greatly impaired ability

to form oligomeric complexes in native gels. The mutants

also had altered mitochondria morphology, as detected by

EM.

G-protein-coupled receptors

Blumer and colleagues [42] have determined in vivo using

fluorescence resonance energy transfer (FRET) and fluor-

escence microscopy that a GxxxG motif in TM helix 1 of

the G protein a-factor receptor is essential for the oligo-

merization of the receptor. Sequence alignment of G-

protein-coupled receptor (GPCR) families reveals that

many of them have conserved GxxxG-like motifs in TM
www.sciencedirect.com
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Figure 1
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GpA-like structures and formation of networks of Ca-H � � �O hydrogen bonds. (a) Stereo view of the structure of the GpA TM dimer [30]. One

monomer is shown with a semi-transparent surface representation. Only the sidechains of the interaction motif (LIxxGVxxGVxxT) are shown. The

central GxxxG motif, and the ridge of V80 and V84 form a wide contact area. Terminal sidechains L75, L76 and T87 extend to the side of the

interaction surface, forming contacts that appear to stabilize the specific geometry of the dimer. The dots show the network of Ca-H � � �O
hydrogen bonds. (b) Stereo view of a GpA-like structure in the PsaL subunit of S. elegans photosystem I (PDB code1jb0) [65]. GxxxG-containing

helices d and g form an apparent network of Ca-H � � �O hydrogen bonds [64]. The helix pair has a parallel right-handed crossing angle of –40.88
and a short interhelical distance of 6.4 Å. Its backbone (blue) is superposed on the GpA dimer (red) with a rmsd of 1.41 Å. (c) Scheme

showing the network of apparent Ca-H � � �O hydrogen bonds in the structure of aquaporin Z [57]. The crossing angles and the interhelical minimal

axial distance are indicated. The interactions between helices 1 and 4, and 5 and 8 are GpA like.
helix 1 and other TM helices. However, other authors

found that the motifs in TM helices 2 and 6 of the a1b-

adrenergic receptor [43], and TM helix 6 of the b2-

adrenergic receptor [44] do not appear to be involved

in homo-oligomerization.

Helicobacter pylori vacuolating toxin

VacA, a toxin from H. pylori implicated in gastric disease,

has a triad of GxxxG motifs: PxxxGGxxxGxxxGxxxG.

This water-soluble toxin inserts itself into the bilayer to

form an anion-selective channel. McClain et al. [45] have

mutated these glycines and a critical proline to alanine.

Using the TOXCAT in vivo assay in the Escherichia coli
membrane [46], they showed that Gly14 and Gly18 are

critical for association and vacuolating activity. The hex-

americ channel has been recently modeled computation-
www.sciencedirect.com
ally by Bowie and colleagues [47] using a Monte Carlo

procedure. In the proposed model, the glycine residues

pack against the valine and alanine ridge on the opposite

side of the helix, with a right-handed conformation and a

crossing angle of �258.

Integrins

The integrin family is composed of receptors that med-

iate bidirectional communication between cells, and

between the cell and the extracellular matrix. Integrins

are type I integral membrane proteins with a conserved

GxxxG-like motif in their TM domains, which are likely

to be functionally involved in the oligomerization events

that are critical for signaling. Recently, Schneider and

Engelman [48] studied the propensity of the TM helices

of several a and b integrin subunits for homo- and hetero-
Current Opinion in Structural Biology 2004, 14:465–479
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oligomerization using the GALLEX in vivo system [49].

Although ab hetero-oligomer formation was observed, in

many cases there was a stronger propensity to form aa

and bb homo-oligomers.

An extensive leucine, alanine, valine and isoleucine

scanning mutagenesis study of the entire TM domain

of aIIb identified the homo-association interfacial motif

as V971GxxGGxxxL980 [50]. Periodicity analysis indi-

cated that the motif is compatible with a crossing angle

of �408, similar to that of GpA, but with the interface

estimated to be rotated by 508 about the main axis of the

helix. A computational model consistent with the muta-

genesis data was also produced using a Monte Carlo

exhaustive search of conformational space. Interestingly,

mutation of L980 to smaller alanine or valine residues

produced a marked increase in dimerization. A computa-

tional model of L980A was found to be closer in structure

to GpA, suggesting that position 980 could be important

for maintaining the relative rotation of the helices.

Several computational models for other integrins have

been proposed, many featuring glycophorin-like motifs

[51,52].

‘BH3-only’ apoptotic proteins

MacKenzie and colleagues [53] have mutated the single

TM domain of BNIP3, a regulatory protein of mitochon-

dria-mediated apoptosis whose activity is dependent on

its TM domain. BNIP3 homodimerizes in SDS-PAGE

and yeast two-hybrid analysis. The authors have mutated

some of the positions of a multiple repeat of small

residues at i and i+4 (SxxxSxxxAxxxGxxxG). Using

TOXCAT, they found that mutations at Ala176 and

Gly180 disrupt dimerization in SDS-PAGE and in mem-

branes. They also mutated a histidine residue at position

173 and found that, whereas a tryptophan mutation was

mildly destabilizing, an alanine mutation was completely

disruptive. The second glycine of the GxxxG motif was

not mutated in this work.

Lactose permease

The structure of E. coli lactose permease at 3.5 Å resolu-

tion has been recently solved by Kaback, Iwata and co-

workers [54]. The crystallized molecule is a Cys154Gly

mutant. The mutant was chosen because it is better

behaved than the wild-type sequence: it can bind sub-

strate, it is thermostable and it does not aggregate [55].

The mutation converts a GxxxC motif into a GxxxG motif

at the interface of a right-handed parallel helix–helix

interaction with short interhelical distance that is well

superimposable to the GpA dimer. The introduced gly-

cine residue, however, does not occur at the tightest point

of the interaction (as in GpA), but one turn down (roughly

corresponding to Tyr87). The mutation impairs transport

and appears to lock the protein in one conformation.

Stability-enhancing mutations are not rare in TM proteins

[56] and thus glycine mutations may be particularly useful
Current Opinion in Structural Biology 2004, 14:465–479
for engineering ultrastable membrane proteins for crystal-

lization [57].

‘Glycophorinization’ of the major coat protein

The single TM domains of the major coat protein (MCP)

from the M13 bacteriophage and GpA share a similar

GxxxG-containing interaction motif; however, the MCP

has a much weaker tendency to oligomerize than GpA. In

a recent collaboration by the Deber, Bowie and Engelman

groups [58], the MPC interface (VVxxGAxxGIxxF) was

converted in steps to the complete GpA motif

(LIxxGVxxGVxxT). TOXCAT experiments showed a

gradual increase in CAT signal as single, double and

triple mutations were introduced; the complete conver-

sion (five mutations) recovered more than 60% of GpA

wild-type activity. The two critical residues appear to be

on the N-terminal (V30L) and C-terminal (F42T) side of

the motif, and were sufficient to recover almost 70% of

the final CAT activity. The minimal consensus motif for

stability was therefore LxxxGxxxGxxxT, consistent with

the findings of previous authors [31,59,60] and suggesting

that the GxxxG motif requires stabilization at either side

of the crossing point (Figure 1a). An F42V mutation was

introduced at the terminal position to probe the specific

role of the threonine hydroxyl group and, interestingly,

the mutation suppressed dimerization. In GpA, Thr87

appears to form interhelical hydrogen bonds [61] when in

bilayers and these bonds would be lost in the valine

mutant. However, it is unlikely that this hydrogen bond-

ing is a major contributor to stability, because threonine

could form an intrahelical hydrogen bond in the unfolded

(monomeric helical) state. A possible additional source of

destabilization would be the loss of a hydrogen bond

between the hydroxyl oxygen of Thr87 and the Ca-H

of residue 84 on the opposite chain.

Technical note

Some authors have occasionally chosen substitutes for

mutagenesis that do not appear to be ideal. Alanine

scanning is very conservative when applied to glycine

and serine residues. Proline mutations can disrupt inter-

actions even when they are introduced at non-interfacial

positions, as they perturb the helical backbone [62].

Finally, as we will discuss later, the strong potential for

interaction of polar residues also makes the interpretation

of this type of mutation problematic. Small-to-large (i.e.

glycine and alanine to leucine or phenylalanine) and

large-to-small (i.e. leucine to alanine) mutations are likely

to be more effective for a first gross mapping of a specific

interface, whereas more conservative isosteric mutations

(e.g. glycine to alanine, threonine to valine) could be

added for detailed exploration.

Does the Ca-H� � �O hydrogen bond stabilize
helix–helix interactions?
Carbon atoms can act as very weak hydrogen bond donors

in organic molecules, including proteins and other
www.sciencedirect.com
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biopolymers [63]. The strength of the interaction is

increased for activated carbon atoms, that is, those that

are bound to electronegative groups, such as sterically

accessible Ca groups and the Cd of proline. The energy

of the bond has been estimated to be approximately half

as strong as an O-H � � �O hydrogen bond. Smith and

co-workers first proposed the involvement of glycine

residues in Ca-H � � �O interactions in TM domains [16].

A structural survey of TM helix interactions by Engel-

man et al. [17] showed that networks of several backbone

to backbone Ca-H � � �O=C interactions can occur

between TM helices separated by a short interhelical

distance. The close approach is favored by glycine and

by other small residues; however, the Ca of any type of

interfacial residue can act as a donor in the networks. In

addition to the backbone carbonyl oxygen, the hydroxyl

oxygen of threonine and serine can also act as acceptors.

The evidence is based mostly on mid-resolution crystal-

lographic data, but the overall picture is likely to hold.

Right-handed parallel interactions, similar to those of

the GpA dimer in their crossing angle (approximately

�408) and close interhelical distances (6–7 Å), were

predominant in the survey. However, GxxxG and

GxxxG-like motifs were also present in left-handed

and antiparallel interactions. Recently determined

structures of helical TM proteins have confirmed and

expanded this view. Loll et al. [64] have analyzed the

structure of Synechococcus elegans photosystem I at 2.5 Å

resolution [65]. They report a total of 75 apparent Ca-

H � � �O hydrogen bonds in 34 TM helices, mostly intra-

subunit. Most interesting in this context is the interhelical

contact with the greatest number of Ca-H � � �O bonds,

which occurs between helices d and g of subunit PsaL.

Both of these helices are characterized by GxxxG motifs.

This interaction has a crossing angle of �40.88 and an

interhelical distance of only 6.4 Å, and superimposes well

onto the GpA dimer, with an rmsd of 1.41 Å (Figure 1b).

Helix d has a tandem G47xxxG51xxxG55, whereas helix g
contains G123xxxG127xxxS131. Similar GpA-like structures

are present in the glycerol facilitator, in the calcium

ATPase [17] and in soluble proteins [66,67].

The presence of apparent Ca-H � � �O bonds has also been

confirmed in the recent structure of aquaporin Z. The

authors reported 15 occurrences in 8 helices [57]. We

found 13 and 23 bonds, using stringent and inclusive

criteria, respectively (Figure 1c). As observed in the

homologous glycerol facilitator, the more extensive net-

works are present in the two GpA-like structures (between

helices 1 and 4, and 5 and 8) and in the antiparallel

interaction between helices 2 and 6. A very interesting

feature is the adjacent GGxxGG motifs at i and i+1 on

helix 8. The two GxxxG motifs pack against two different

helices, forming Ca-H � � �O bonds in both cases.

Although there may be convincing structural evidence

that Ca-H � � �O hydrogen bonds often participate in TM
www.sciencedirect.com
helix–helix interactions, their actual contribution to struc-

tural stability is still under debate. Very recently, two

groups have presented the first experimental measures of

the bonds’ energetic contribution. Arbely and Arkin [68]

have selectively deuterated Gly79 of GpA, which appears

to act as a Ca donor. Using FT (Fourier transform) IR,

they measured the CD2 asymmetric stretching mode in

both the monomeric and the dimeric states. From the

observed difference in the stretching frequency between

the two states, they estimated an energy of 0.88 kcal/mol

from the relationship DG = 0.31�(Dv0.5) [69]. The con-

clusions of this study are in apparent disagreement with

the findings of Bowie and co-workers [70], obtained by

thermodynamic folding measurements of bacteriorho-

dopsin (bR) mutants. In these studies, Thr24, which

receives a hydrogen bond from the Ca of Ala51, was

mutated to an isosteric valine residue. They compared

the stability of the wild type with that of three mutants

(T24V, T24S and T24A), using SDS denaturation, and

also crystallized the mutants to verify the structural

impact of the mutations. The stability was only margin-

ally affected and, in the case of T24A, it actually

increased. Taken together, these two initial studies sug-

gest that isolated Ca-H � � �O interactions (T24 in bR)

may not be as stabilizing as those present in extensive

networks (G79 in GpA). However, more data on both

systems are required before a final conclusion can be

drawn.

Interactions between polar sidechains
in membranes
The inclusion of a single asparagine, aspartic acid, glu-

tamic acid or glutamine in an otherwise uniformly hydro-

phobic helix provides a strong driving force for self-

association in micelles and biological membranes

[71,72]. In previous studies, an asparagine sidechain

was placed at an ‘a’ position of a heptad repeat, with

valine at the remainder of the ‘a’ positions and leucine at

each ‘d’ position. The peptides formed dimers and tri-

mers in micelles, and the interaction was eliminated when

the asparagine was changed to a variety of other apolar

residues. Among the polar sidechains, only glutamine or

protonated aspartic acid or glutamic acid supported the

association of the helices [73,74]. Similarly, asparagine

and aspartic acid residues interact favorably when placed

in an antiparallel helical hairpin translated in vitro in the

presence of rough microsomes [75].

Although a single Ser–Ser contact between TM helices

may not be sufficient to drive association, cooperative

interactions between multiple serine residues appear to

provide adequate stability for assembly. Statistical pair-

wise contact potentials have shown that serine residues

have a high tendency to form interhelical interactions

[9,10]. Using TOXCAT, Engelman and co-workers

showed that multiple serine residues are able to drive

the association of parallel TM helices [76] and similar
Current Opinion in Structural Biology 2004, 14:465–479
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Figure 2

α β

TCRαβ

CD3γε

CD3δε

Zeta

D D

D
D DE

R K

K
1

3 2

CD3δε

CD3γεZeta

α
β

An intricate network of interactions between ionizable residues

specifically stabilizes TM helix interactions in the TCR–CD3 complex.

Positive sidechains are donated by the TCR heterodimer (blue circles)

and interact with a pair of carboxylate groups (red circles) from the

CD3ge, CD3de and zeta dimers. Figure reproduced from [84] with

permission.
serine-rich motifs have been employed in the design of

ion channel peptides [77,78]. A parallel motif with the

heptad repeat SxxLxxx forms the dimerization interface

of the erythropoietin receptor [79]. On the other hand,

Liang and co-workers recently described an antiparallel

‘serine zipper’ motif in which interacting serine side-

chains are spaced at seven-residue increments in the

crystal structures of TM proteins [10]. This serine zipper

features an antiparallel arrangement of two helices, with

opposing serines making hydrogen bonds to the backbone

carbonyl of the serine on the opposite helix.

Effects of sequence context and membrane

locations on polar interactions

The effect of asparagine to valine mutations at the ‘a’

position of a model membrane-spanning helix (MS1) has

been investigated as a function of location within the

membrane. When the additional asparagine was located

in the apolar region of the TM helix, it increased the

stability of MS1 by approximately 2 kcal per mole of

monomer [80]. When placed at the interface between the

polar and apolar regions of the TM helix, the asparagine

failed to contribute significantly to the free energy of

association. Furthermore, in a water-soluble coiled coil,

the same substitution of a single asparagine is destabiliz-

ing by 2–3 kcal/mole�helix [81]. These free energy

changes correlate closely with the statistical tendency

of asparagine and valine to occur in buried versus exposed

positions in the corresponding regions of water-soluble

and membrane proteins [80].

Langosch and co-workers [79] have placed an asparagine

residue at each position of a poly-Leu sequence, and

determined their effects on association in the inner

membrane of E. coli and in SDS micelles. In micelles,

as well as biological membranes, the asparagine sidechain

mediated TM helix–helix association only when placed at

or near the middle of the helix. To assess the association

in biological membranes, the poly-Leu sequence was

fused to the ToxR repressor, which controls the level

of expression of reporter genes in response to dimeriza-

tion of the membrane helix. The level of activation, when

considered as a function of the position of the asparagine

in the sequence, showed an a-helical repeat, suggesting

there was a preferred orientation of the helix relative to

the fused ToxR receptor. The importance of the phase of

the TM helix relative to the fused ToxR domain has also

been seen in other studies with natural TM helices

[50,82]. Similar results were obtained by Dawson et al.
[83] in a study of natural TM helices containing gluta-

mine or glutamic acid. When these residues were near the

N terminus of the TM helix, they led to weak association,

whereas when they occurred near the middle of the helix,

they led to a strong association that was eliminated upon

mutation to alanine. Also, the authors examined the

degree of activation of ToxR-dependent transcription

in response to the introduction of asparagine or aspartic
Current Opinion in Structural Biology 2004, 14:465–479
acid into the TM helix of M2. The degree of activation

was position dependent, probably reflecting both differ-

ences in the phasing of the mutations within the helix and

differences in the ability of the polar residue to reinforce a

weak dimerization interface in the TM helix.

Polar contacts in the association of transmembrane

helices, receptor activation and signal transduction

Appropriately placed polar residues are proving to be

essential features in the association of a wide variety of

TM helices and in the folding of membrane proteins.

Perhaps the most dramatic example is the T-cell receptor

(TCR), in which an intricate network of interactions

between ionizable sidechains serves to stabilize a com-

plex of individual helices from eight different protein

chains [84,85]. The stoichiometry and specificity of asso-

ciation were recently determined using a novel method of

immunoprecipitating the native complex. The TCR a-

chain TM helix contains a lysine and an arginine side-

chain, whereas the b-chain TM helix contains a single

lysine residue. As shown in Figure 2, each of these basic

sidechains recruits two additional chains from CD3 and

the zeta subunit, all of which have a single acidic residue.

Thus, the resulting complex consists of a network of

intermingled three-helix bundles, each stabilized by
www.sciencedirect.com
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two carboxylate-containing residues interacting with

either an arginine or lysine residue. Most probably, the

acidic residues form a carboxylate–carboxyl hydrogen

bonded pair, which bears a single negative charge to

balance the charge on the lysine or arginine residue with

which it is interacting.

Studies with synthetic peptides have implicated polar

residues in the association mechanisms of several TM

proteins. The aspartate receptor has two TM helices that

associate to form a TM four-helix bundle [86]. Synthetic

peptides spanning the sequence of the first TM helix

(helix-1) form dimers in detergent micelles, whereas

helix-2 fails to associate [87]. These findings are fully

consistent with disulfide cross-linking studies on the

intact protein, which showed that helix-1 and helix-10

are in physical contact, whereas helix-2 and helix-20 do

not physically interact in the TM four-helix bundle [86].

A polar QxxS motif is critical to the association of helix-1,

as assessed by the ToxR dimerization method [39]. A

mutational analysis showed that the glutamine was more

important for dimerization than the serine and that the

association could be enhanced by mutating the serine

to either glutamine or glutamic acid [88]. In a related

approach, peptides were synthesized corresponding to

the three TM helices of the enzyme diacylglycerolkinase

(DGK). A peptide corresponding to TM helix 2 was able

to interact with intact DGK and inhibit its activity. This

peptide also had a polar glutamic acid and replacement of

this residue eliminated activity.

Polar residues can play a decisive role in the aberrant

association and misfolding of TM domains. For example,

the receptor tyrosine kinase encoded by the neu proto-

oncogene is constitutively activated by a single valine to

glutamic acid substitution in the predicted membrane-

spanning sequence of the receptor [89,90]. Mutations in

the TM domain of the cystic fibrosis conductance reg-

ulator (CFTR) also lead to the accumulation of misfolded

protein [91,92] or aberrant association of helices in mutant

forms of the protein [92]. Similarly, mutating Thr617 to

asparagine in the granulocyte colony-stimulating factor

receptor TM helix gave a growth-factor-independent

phenotype in patients with acute myeloid leukemia

[93], and mutating Ser498 of the thrombopoietin receptor

to asparagine rendered this receptor constitutively

active [94].

Asparagine-scanning mutagenesis

Transient associations of TM domains are important for

the regulation of a variety of proteins. The introduction of

an asparagine sidechain can improve the energetics of

association of TM helices, by reinforcing a weak motif

when placed in the proper position in the sequence.

Thus, by scanning asparagine throughout a TM peptide,

it is possible to modulate the propensity for oligomeriza-

tion and to help reveal its role in a biological response.
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Langosch and co-workers [79] scanned asparagine side-

chains throughout the sequence of a TM serine zipper

important for dimerization of the erythropoietin receptor.

When placed on the polar side of the helix, an asparagine

sidechain can strongly stabilize the formation of dimers,

as assessed by the ToxR assay. However, when stabilizing

mutations were introduced into the full-length receptor,

they failed to further increase the level of activation.

These findings are consistent with previous studies,

which had suggested that the wild-type receptor was

fully dimeric in vivo and that signaling involved a transi-

tion between two different dimeric states, rather than a

shift in the monomer/dimer equilibrium [95].

The TM helices of the a and b chains of integrins have

been proposed to associate in the inactive state of this

highly regulated family of proteins, but to move apart in

the activated state [96–99]. Furthermore, when released

from cytoskeletal restraints, the cytoplasmic and TM

domains of these proteins have a strong tendency to

self-associate [100], which may be an important step in

the clustering of these integrins into focal adhesions

[101]. To probe the effects of homo-oligomerization in

integrin activation, Li et al. [101] scanned asparagine

residues throughout the TM helix of the b subunit.

Two mutations along one face of the helix, G708N and

M701N, enabled integrin aIIbb3 to constitutively cluster

and bind soluble fibrinogen. This mutation also enhanced

the tendency of the TM helix to form homotrimers. Thus,

interactions that cause dissociation of the TM helix from

the a subunit appear to activate the integrin.

A few words of caution on the interpretation of aspara-

gine-scanning studies are in order. Firstly, the introduc-

tion of asparagine may enhance association only if the

pre-existing interaction is relatively weak. For example,

the introduction of asparagine into a highly evolved

GxxxG motif might disrupt, rather than facilitate, dimer-

ization. Secondly, when considering complex interaction

networks, the introduction of asparagine might disrupt

one helix–helix interaction while facilitating another. For

example, in the case of mutating the TM helix of integrin

b3, it is possible that some of the effects may arise from

disrupting an interaction with aIIb, as well as from

enhancing the homotypic association.

Proline as a determinant of structure, folding
and interaction in transmembrane helices
There is little doubt that proline residues are important

for the function and structure of integral membrane

proteins, as evidenced by the recent observation that

mutations of proline have one of the highest phenotypic

propensities in the analysis of TM sequences from the

Human Gene Mutation Database [102]. Recent years

have seen a refinement in our understanding of the role

played by proline in defining the structural and ther-

modynamic properties of membrane proteins. In the
Current Opinion in Structural Biology 2004, 14:465–479
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following sections, we will summarize recent findings

concerning: the structural properties of proline in TM

helices; how these properties influence the tertiary struc-

ture and hence function of membrane proteins; the role of

proline in the avoidance of misfolding; and emerging

proline-containing motifs involved in helix–helix associa-

tion in membranes.

Structural aspects

The fusion of the backbone and sidechain atoms into a

five-membered pyrolidine ring imparts special conforma-

tional characteristics to proline (Figure 3a). The ring

induces the residue to adopt a f angle of approximately

�608, thereby stabilizing the helical conformation. Thus,
Figure 3
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proline is strongly helix stabilizing, but only when placed

in the first position (N1) of an a helix. At other positions,

it is destabilizing for two reasons. First, it lacks an amide

proton that could form a hydrogen bond to a carbonyl at

position i–4 in the helix. Second, it influences the tor-

sional angle preference of the residue preceding it in the

sequence (the pre-Pro position) [103,104], stabilizing

more extended conformations relative to the helical con-

formation (Figure 3b). Using the PDBselect database

[105], we calculated that the residue preceding proline

has a 5.4-fold lower tendency to adopt f/c angles in the

generously allowed aR-helix region of the Ramachandran

plot (as defined in [106]). Also, the population of the

remaining regions of conformational space is altered, with
Current Opinion in Structural Biology

pre-Ala

–180 –120 –60 0 60 120 180
φ

20 40 60 80 100

PDB Select, Proline
PDB Select, No Proline
Membranes, Proline
Membranes, No Proline

Kink (degrees)

. The pre-Pro residue c angle and the i–4 carbonyl are labeled.

l oxygen. (b) Ramachandran plots of pre-Pro versus pre-Ala

y steric interactions with proline Cd, resulting in a 5.4-fold lower

ovel ‘pre-Pro’ region (centered near –1308,+708), normally not

kink angles in the mostly water-soluble protein PDB Select database

of TM helices of all high-resolution TM proteins using an updated

of aR residues (aR as defined by Balaram [106]). Axes were determined

s is defined as the kink.

www.sciencedirect.com



Folding of helical membrane proteins Senes, Engel and DeGrado 473
a novel ‘pre-Pro’ region becoming sterically accessible.

Finally, the i–4 carbonyl oxygen has to shift away from the

nitrogen that it is normally hydrogen bonded to, as a result

of the steric constrains imposed by the presence of the

ring Cd (Figure 3a). Thus, in a water-soluble protein,

proline is generally considered a helix breaker.

The location and structural context of a proline within a

TM protein determine whether it breaks or merely kinks

helices. Von Heijne and co-workers [107–109] used gly-

cosylation mapping to determine which residues had the

greatest tendency to break helices and induce helical

hairpins in membranes. When introduced such that it

could break a helix near the headgroup region, proline

stood out as the most hairpin-stabilizing amino acid.

However, when embedded deep within a membrane,

proline is easily accommodated in a helix [110], which

is the default state of a hydrophobic chain at high dilution

within a solvent of low dielectric. The increased local

backbone flexibility introduced by the proline residue

may be important for hinge-bending motions that are

likely to play a functional role in catalysis and signal

transduction [111,112].

Although proline lacks an amide NH with which to form a

hydrogen bond, its CdH2 protons (the d carbon is the

carbon directly bonded to the nitrogen) can form hydro-

gen bonds to the unfulfilled amide carbonyls at positions

i–3 and i–4 [113]. This interaction mitigates the loss of

stronger hydrogen bonds to amide NH groups and

induces a slight kink in the helix. A database study of

proline kinks in TM helices shows a mean kinking angle

of 21 � 118 [114]. We have computed related distributions

for proline kinks in water-soluble helices versus TM

helices (Figure 3c). Interestingly, we find that the dis-

tribution is sharper and favors smaller kink angles for TM

helices versus water-soluble helices. Thus, the environ-

ment and/or tertiary packing constrain the helices to be

straighter within membranes.

This finding prompted us to compare the degree of

bending of water-soluble versus membrane-soluble

helices that lack proline. This is a particularly interesting

question given a recent analysis that showed that the a

helices in membrane proteins tended to have more ideal

a-helical f/c angles than water-soluble helices [115].

Figure 3c illustrates histograms of the angle between

the helical axes of consecutive seven-residue segments

of long helices (�14 residues) in water-soluble versus

membrane-soluble proteins. The two distributions are

identical within the error of analysis. The frequency

distribution peaks at approximately 108, indicating that

helices that lack proline are, on average, slightly bent in

both classes of structures. As discussed by Cross et al.
[115], helices are expected to become straighter with

increased refinement of a structure, which could lead

to some shifting of the histograms towards lower angles.
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However, we expect coordinate error to be approximately

the same for both water-soluble and membrane struc-

tures, suggesting that the helices in each class are similar.

We also examined the radius of curvature of water-soluble

versus membrane helices, and again found no significant

difference between the two distributions.

Effects of removing proline residues from helices

The diagram in Figure 3c provides a comparison of the

stiffness of a proline-containing helix and the stiffness of a

helix lacking this residue, and can help to rationalize

much of the data concerning proline mutations in the

literature. We first consider the effects of mutating a

proline residue to another sidechain, such as alanine, in

a kinked helix within the context of a native folded

protein. The mutation will be accommodated, at little

thermodynamic expense, as assessed by the fact that

helices lacking proline are quite frequently kinked to

this extent. What might be gained in improved helical

propensity in water-soluble proteins will be lost due to the

need to kink the helix and weaken the NH to carbonyl

amide hydrogen bonds at the site of the mutation [116].

However, the alanine mutation introduces strain in the

structure, because the helix would generally prefer to be

more straight, but for the tertiary interactions that force a

kink. In the unfolded state, the helix would thus have a

straighter conformation. Thus, the protein may have

altered folding kinetics, or undergo aggregation or other

misfolding events.

Bowie and colleagues [117] have mutated three proline

residues in the center of bR TM helices, and determined

that the crystal structure and stability were not dramati-

cally altered. The one mutant that was able to restore the

helical hydrogen bond pattern was as stable as the wild

type and functional, whereas the other two were both

destabilized by about 1 kcal/mol. They complemented

the study with a sequence analysis of the alignments of

protein families with a member of known structure.

Ninety percent of the positions corresponding to a kink

in the structure had 10% or more prolines in the align-

ment, whereas the non-kinked positions never reached

that threshold. This clearly shows that proline residues

are not required to kink helices, but that sites where

proline residues are even slightly conserved in the aligned

sequences of TM domains are very likely to be in kinked

conformations across all the related proteins.

Although the removal of a proline residue appears to have

a rather small effect on stability and function, it can have a

deleterious effect on the kinetics and robustness of fold-

ing. For example, mutants of a heat shock transcription

factor showed different kinetics of folding, with increased

accumulation of an intermediate [118], suggesting that a

helical proline prevented aggregation of partially folded

forms. There are now indications that helical proline

residues might have similar roles in the folding of TM
Current Opinion in Structural Biology 2004, 14:465–479
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helices. Using a series of techniques, Wigley et al. [92]

have studied different mutations of a proline residue in

the third TM helix (CFTR-m3) of the chloride channel

CFTR, a protein that undergoes inefficient maturation in

the endoplasmic reticulum [119]. Mutations at P205 sig-

nificantly impair correct maturation, but the small fraction

of surviving protein is functional. Surprisingly, the wild-

type sequence of CFTR-m3 incorporates better in SDS

micelles and is more helical than leucine, glycine, serine

and alanine mutants. In vitro translated transferrin recep-

tor CFTR-m3 chimeras also had a higher efficiency of co-

translational integration with respect to mutants. Further-

more, Ladokhin and White [120] reported that they were

able to mitigate the tendency of a hydrophobic model

peptide to aggregate in solution by inserting a proline

residue.

Effects of introducing proline residues into helices

The introduction of a proline residue within relatively

straight helices is likely to be destabilizing. Proline is

rarely accommodated within straight helices in the crystal

structures of natural proteins (Figure 3c), indicating that

accommodating a proline in a straight helix must occur

at a significant energetic cost. Thus, the mutant would

either be forced into an energetically costly straight helix

or it could introduce a kink, which is likely to disturb the

tertiary packing. Indeed, Orzaez et al. [62] recently con-

ducted proline-scanning mutagenesis of the GpA dimer,

which has the interaction sequence LIxxGVxxGVxx-

Txxx (x is a hydrophobic amino acid). Almost all muta-

tions eliminated dimer formation, including mutations of

the highly mutable ‘x’ sites, which otherwise accom-

modate a variety of other hydrophobic residues. Muta-

tions near the N terminus of the consensus site (including

the first leucine of the interaction motif) were much

better accommodated than those near the C terminus,

presumably because proline influences the conformation

of residues N terminal to itself. Similarly, Langosch

et al. [121] found that proline disrupted oligomerization

of TM helices that were designed to form coiled coils in

membranes.

In other contexts, proline might stabilize helix–helix

packing. It has a high packing propensity in TM helices

[11], indicating that it is often tightly packed in the

structures of natural proteins. A direct indication of the

ability of proline to be involved in TM interactions was

obtained by Dawson et al. [76] in a selection from rando-

mized helical interfaces with TOXCAT [31]. The main

motifs observed were very rich in serine, threonine and

proline residues. Pairs of proline residues at i, i+4 were

also present in three of the four sequences in the selection

that lacked any polar residue. Several proline patterns are

also observed at high frequency in TM sequences [33,92].

Thus, when placed in the proper context, this amino acid

could frequently participate in mediating helix–helix

interaction.
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Thermodynamic studies
One of the greatest hurdles to measuring the thermo-

dynamics of membrane protein folding is finding condi-

tions under which the proteins reversibly fold in a two-

state process between a native state and a well-defined

unfolded ensemble. For the b-sheet class of protein, the

processes of membrane insertion and folding appear to be

tightly coupled, so the energetics of folding can be

monitored using urea denaturation, as for water-soluble

proteins [122]. However, for the helical class of protein,

the unfolded state consists of inserted helices that are

largely non-accessible to water-soluble denaturants, thus

requiring different methods of analysis. One approach

involves the titration of the native protein in a structure-

stabilizing micelle with the denaturing detergent SDS

[123,124] or alcohols [125]. The free energy of folding in

the absence of SDS is then approximated by assuming

that DGfold extrapolates linearly with respect to the mole

fraction of SDS. This method has provided the first view

of the energetics of folding of mutants of large membrane

proteins. Its disadvantages, however, are that it is limited

to proteins in micelles, the method of linear extrapolation

of the free energies of folding to zero SDS concentration

is an approximation, the unfolded state has not yet been

well characterized from the perspective of residual ter-

tiary structure and the assumption of a two-state process is

difficult to assess.

The folding of self-associating helical bundles can be

studied with an experimental approach that does not

suffer from some of these limitations, although so far it

has been applied primarily to relatively simple systems.

In this case, folding/assembly can be studied directly

by simply measuring the monomer/n-mer equilibrium,

which can be manipulated by changing the peptide/

detergent ratio in micelles or peptide/phospholipid ratio

in bilayers. In this case, the unfolded state is a monomeric

helix that corresponds well to the non-interacting helices

postulated to comprise the unfolded state in the two-state

folding model of Popot and Engelman [4]. For aggregates

larger than dimers, the two-state nature of the overall

process can be rigorously addressed by measuring the

cooperativity of assembly and the concentrations of inter-

mediate aggregation states [126]. A variety of methods

can be used to monitor the degree of association

(reviewed in [127]), including various fluorescence meth-

ods, analytical ultracentrifugation, CD spectroscopy and

thermodynamically coupled thiol-disulfide exchange

reactions [128,129]. Furthermore, a large number of

membrane proteins have been cleaved into multiple

fragments that nevertheless associate in membranes to

adopt native functional proteins [4], allowing the exten-

sion of the method to more complex proteins when

reversible folding can be established [125].

Experiments based on both types of systems are begin-

ning to define the role of packing in the folding of
www.sciencedirect.com
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Figure 4
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membrane proteins. With water-soluble proteins one can,

for example, predict the energetic consequences of chan-

ging a buried non-polar sidechain to a smaller sidechain. A

leucine to alanine mutation will ‘cost’ about 2–5 kcal/mol

[130], depending on the extent of structural rearrange-

ment accompanying the mutation [131]. The loss in

hydrophobic effect contributes about 2.5 kcal/mol. The

extent of destabilization beyond this value depends on

the size of the cavity that is generated. The corresponding

range of values for membrane-soluble proteins is only

now beginning to be measured for a variety of systems,

including GpA [132], influenza A virus M2 protein [133]

and bR [123]. These studies show a range of about 0–

2 kcal/mol for mutating a large hydrophobic sidechain

(phenylalanine, leucine, isoleucine, methionine) to ala-

nine, indicating that packing of buried apolar groups plays

a much smaller energetic role in membrane proteins than

in water-soluble proteins. This finding is consistent with

the lack of a hydrophobic effect in membranes. This

finding is also consistent with studies of the association

of model poly-Leu and poly-Ala helices, which show

weak but significant association in bilayers [134–138].

The effect of small-to-large mutations can have more

drastic energetic consequences, particularly when they

disrupt the intimate packing of GxxxG motifs [26,139].

On the other hand, when the large mutated sidechain can

fill the aqueous pore of ion-conducting channels, they are

instead tolerated or can even stabilize the structure [133].

Based on work with membrane peptides, hydrogen bonds

appear to be important for stability. Thermodynamic

measurements with model peptides suggest that a good

hydrogen bond involving an asparagine sidechain is

‘worth’ about 2 kcal/mol when placed in the most apolar

region of the TM helix [80]. Bowie et al. recently con-

ducted an extensive analysis of one helix (helix B) of bR

[123], which led to the conclusion that hydrogen bonds

did not contribute to the stability of bR. Instead, they

observed a weak correlation between the area of the

sidechain mutated and the change in free energy upon

mutation. However, it is important to ask whether the

hydrogen bond is formed by a tertiary contact to a

neighboring helix. For example, the hydroxyls of serine

and threonines form intrahelical hydrogen bonds to a

backbone carbonyl one turn up in a helix. This interaction

is expected to be retained in the unfolded state, so there

would be a small value of DDG for mutation to alanine.

Indeed, if one examines the thermodynamic data for the

mutants that are located within the apolar region of the

bilayer, only two residues, T46 and Y57, are involved in

tertiary contacts with other polar sidechains. Figure 4

illustrates the thermodynamic effect of mutating the

residues within the most apolar region of the bilayer, as

a function of the surface area change associated with the

mutation. Following Bowie’s analysis, only destabilizing

mutations are considered, because stabilizing large-to-
www.sciencedirect.com
small mutations presumably involves a conformational

change. When the sidechains that do not form tertiary

hydrogen bonds are considered as a group, a straight line

is observed. They show a near-zero intercept and a slope

of 17 cal/Å2. How does this compare with the expectation

from a water-soluble protein? Xu and Matthews [131]

showed that the free energy change for mutation from a

large residue to alanine has two components. The first is a

constant �2 kcal/mol, which represents the free energy of

transfer of the large apolar residue to the interior of the

protein. This term is near zero for the bR mutants

considered, because of the lack of a hydrophobic effect.

The second term is near 20 cal/(mol Å2) for both water-

soluble and membrane proteins, and represents the loss

of van der Waals interactions between the mutated

sidechain and the walls of the cavity.

The two mutants of the sidechains of bR that are involved

in tertiary hydrogen bonds fall below the line for non-

hydrogen-bonded residues (i.e. they are additionally

destabilized) by 0.5–1.0 kcal/mol when compared to

the expectation from their surface area alone [131].

Clearly, two data points are insufficient to conclude that

this is a general effect, and highlights the need to obtain

more data for both designed and natural systems.

If membrane proteins have a significantly lowered

contribution from the burial of apolar residues and
Current Opinion in Structural Biology 2004, 14:465–479
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sidechain-mediated hydrogen bonds are stabilizing by

only 1–2 kcal/mol, what stabilizes their folds? One factor

is that they fold with a significantly smaller loss of con-

formational entropy than water-soluble proteins do. The

loss of backbone entropy is significantly decreased

because the helices are pre-formed in the unfolded state.

Furthermore, the fold of a membrane protein is highly

directed by its biosynthetic insertion into a membrane,

which forces the helices to lie parallel or antiparallel to

one another. Finally, the loss of sidechain entropy is

minimal for interfaces rich in small residues, including

glycine, alanine and the b-branched amino acids threo-

nine and valine [34,35,140].

Clearly, our understanding of the folding of membrane

proteins in micelles is just beginning to emerge. An

even greater challenge will be to obtain a satisfactory

understanding of their folding in phospholipid bilayers

[141]. Along these lines, early work with b-proteins

[122], as well as studies of model [134–137] and natural

[128,129] helical assemblies, has shown the role of

hydrophobic matching, cholesterol content and bilayer

length in defining the folding process. Work in this area

will provide a particularly fertile avenue for future

investigations.

Update
Two interesting papers have been published since the

submission of the review. Bowie and colleagues [142]

have tested how proline residues are accommodated in a

TM helix by introducing 15 individual substitutions on

helix B of bR. The mutations were generally destabiliz-

ing and proline residues were better tolerated near the N

terminus. Deber and co-workers [143] have made a

library of hairpin constructs formed by TM helices 3

and 4 of CFTR, introducing 21 individual asparagine

mutations on helix 4. The altered SDS-PAGE mobility

of hairpins was used to report the propensity of the

mutants to form a hydrogen bond with Q207 on helix

3. The results indicate that Q207 interacts with variable

strength with the 21 mutants, depending on the position

of the asparagine along the main helical axis and the

helical phase.
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