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CONFORMATIONAL SAMPLING IN PROTEIN
STRUCTURE PREDICTION

Sabareesh Subramaniam

Under the supervision of Assistant Professor Alessandro Senes
At the University of Wisconsin-Madison

This thesis describes computational structure prediction methods I de-
veloped for the study of membrane proteins.

Protein structure prediction may be considered as two almost independent
stages: the modeling of the backbone, followed by the optimization of the
side chains for each backbone geometry. Side chain optimization can become
the bottleneck stage of structure prediction, and therefore, needs to be as
efficient as possible. In the first part of this thesis, I describe novel methods
to improve the speed and accuracy of side chain modeling, which I later
leverage to predict the structure of membrane protein complexes.

Side chain optimization is a highly combinatorial task complicated by the
great degree of side chain conformational freedom. A common approach to
model side chain flexibility is to discretize the space in a set of representative
conformations, called conformer libraries. These libraries need to provide
sufficient sampling of the underlying space, while remaining as small as
possible, for the sake of computational efficiency. To achieve a good balance
between these conflicting needs, I have developed a novel energy-based
criterion to create conformer libraries (chapters 2 to 4). Through experiments
I demonstrate that these energy-based conformer libraries enable faster and
more accurate side chain modeling using a smaller number of conformers.

Membrane proteins often associate with each other to form complexes
which are essential for their function. I have developed high-throughput
methods, enhanced by the use of energy-based conformer libraries, for
predicting the structure of these complexes (chapters 5 and 6). The method
described in chapter 5 interprets “low resolution” experimental results,
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such as mutagenesis data, to create a structural model of the bacterial
division protein FtsB. This model has been used to guide the experimental
characterization of the FtsB protein.

Ab initio structural prediction methods are important when experimental
results are not available. Chapter 6 describes the geometric analysis of a
common transmembrane motif (GASright) which reveals that the motif is
optimized for Cα hydrogen bonding. The analysis led to the creation of
“CATM”, a method that predicts ab initio the structure of GASright motifs
at near atomic resolution.

Alessandro Senes
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abstract

This thesis describes computational structure prediction methods I developed
for the study of membrane proteins.

Protein structure prediction may be considered as two almost independent
stages: the modeling of the backbone, followed by the optimization of the
side chains for each backbone geometry. Side chain optimization can become
the bottleneck stage of structure prediction, and therefore, needs to be as
efficient as possible. In the first part of this thesis, I describe novel methods
to improve the speed and accuracy of side chain modeling, which I later
leverage to predict the structure of membrane protein complexes.

Side chain optimization is a highly combinatorial task complicated by the
great degree of side chain conformational freedom. A common approach to
model side chain flexibility is to discretize the space in a set of representative
conformations, called conformer libraries. These libraries need to provide
sufficient sampling of the underlying space, while remaining as small as
possible, for the sake of computational efficiency. To achieve a good balance
between these conflicting needs, I have developed a novel energy-based
criterion to create conformer libraries (chapters 2 to 4). Through experiments
I demonstrate that these energy-based conformer libraries enable faster and
more accurate side chain modeling using a smaller number of conformers.

Membrane proteins often associate with each other to form complexes
which are essential for their function. I have developed high-throughput
methods, enhanced by the use of energy-based conformer libraries, for
predicting the structure of these complexes (chapters 5 and 6). The method
described in chapter 5 interprets “low resolution” experimental results,
such as mutagenesis data, to create a structural model of the bacterial
division protein FtsB. This model has been used to guide the experimental
characterization of the FtsB protein.

Ab initio structural prediction methods are important when experimental
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results are not available. Chapter 6 describes the geometric analysis of a
common transmembrane motif (GASright) which reveals that the motif is
optimized for Cα hydrogen bonding. The analysis led to the creation of
“CATM”, a method that predicts ab initio the structure of GASright motifs
at near atomic resolution.
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1 conformational sampling in protein
structure predicition
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Summary

The goal of protein structure prediction is to obtain a 3-dimensional model
of the target protein describing the location of all, or a set of its atoms, with
respect to each other. Typically, protein structure prediction is posed as
a search problem over a space of possible geometries. This search space is
then presented to an algorithm which is required to determine the geometry
with the least energy, as defined by an energy function.

Conformational sampling refers to the process of modeling the target
conformational space by compiling a set of representative geometries. Dis-
crete conformational sampling makes the problem accessible to a number of
algorithms that can efficiently search discrete spaces. In the case of protein
structure prediction, conformational sampling may be performed over the
space of possible side chain as well as backbone geometries. This sampling
is an important component of all stages of protein design and structure
prediction because of the great conformational flexibility of proteins, it is a
computationally intensive task. Described in this thesis are efficient sampling
techniques for backbone and/or side chain conformational sampling.

This chapter introduces the need for structure prediction and the im-
portance of conformational sampling in a variety of problems. Specific
issues and solutions for side chain conformational sampling are discussed
in chapters 2 to 4. Backbone conformational sampling when experimental
results are available is explained in chapter 5. An analysis of protein con-
formational space which led to the CATM method for predicting structure
directly from protein sequence is discussed in chapter 6. Chapter 7 describes
the C++ software library developed in-house, called MSL, which enabled
all the molecular modeling described in this thesis.
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1.1 Background

The central dogma of molecular biology [Crick (1970)] explains how genetic
information encoded in the DNA (Deoxyribonucleic acid) is transformed into
functional proteins in living organisms. A simplified, popular restatement
of the dogma is “DNA makes RNA makes protein”. This discovery directed
scientific efforts towards the decoding of chromosomal DNA resulting in the
creation of a new field of science called genomics.

Genomics is the field of science that involves DNA sequencing, sequence
assembly, annotation and analysis of the genome. Genomics, and in particu-
lar DNA sequencing, benefited from the advancements in computer science
[Staden (1979)] and the two fields advanced rapidly making the sequencing
of entire genomes possible. In 1990, the human genome project was set
up as a collaborative worldwide project in an effort to understand human
diseases better. The goal of the project was to decode the human DNA and
eventually understand the complex biological processes in the human body.
This project, completed in 2003, sequenced the entire human DNA and
identified approximately 20,000-25,000 protein-coding genes [Consortium
(2004)]. These genes undergo transformation resulting in proteins which are
a central component of most biological processes.

Proteins are molecules which perform a wide variety of functions in living
organisms as catalysts, structural elements, regulators, channels, trans-
porters, receptors [Schlessinger (2000); Fagerberg et al. (2010); Endres et al.
(2011)] and so on. Therefore, a thorough understanding of proteins should
lead to a better understanding of biological processes. However, in order
to understand protein function at a molecular level, it becomes necessary
to determine their 3-dimensional structure, in addition to their amino acid
sequence. X-ray crystallography [Kendrew et al. (1958)] is the most widely
used method to determine protein structure; followed by NMR (Nuclear
Magnetic Resonance) [Wuthrich (2001)]. However, the experimental struc-
ture determination process is time-consuming and has been far outpaced by
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the whole genome sequencing projects [Xiang (2006)].Therefore, a gap exists
between the number of protein sequences available and the number of protein
structures available; blocking more comprehensive scientific analyses of these
proteins. Computational approaches to determining protein structure are
being employed in an attempt to bridge this gap.

The sequence-structure gap is especially severe in the case of membrane
proteins. Membrane proteins are a class of proteins associated with the cell
membrane, which comprise about 30% of all genomes and serve as targets
for about 50% of the pharmaceuticals in the market today [Krogh et al.
(2001); Fagerberg et al. (2010)]. Owing to their abundance and significance,
knowledge of membrane protein structure is essential. However, inspite of
technical advancements in crystallography [Carpenter et al. (2008)] and
NMR, the sequence-structure gap is wide in the case of membrane proteins
because of a variety of technical difficulties. As demonstrated in this thesis,
computational structure prediction presents a promising alternative to study
these proteins.

Protein structure prediction presents itself in a wide range of scenarios
with different levels of difficulty. For example, in some cases experimental
data may be available, and this data can be incorporated to guide compu-
tational prediction. Sometimes ab initio methods that model structures
directly from primary sequence are required. Frequently, computational
methods to design or re-engineer proteins are used as a means to test
our understanding of proteins. This thesis presents the development of
computational methods applicable to many of these scenarios.

1.2 Protein structure prediction

Computational protein structure prediction is an important tool to bridge
the gap between the available sequence data and structural information.
Protein structure has been the topic of much study in the 20th century and
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a brief review of the elements that constitute protein structure and guide
structure prediction is useful for further discussion.

Protein Structure

Proteins are molecules made up of one or more linear chains of amino acids.
Successive amino acids in the protein chain are linked together by an amide
or “peptide” bond linking the alpha carbon atoms and therefore proteins
are also described as polypeptide chains. They are composed of 20 naturally
occuring amino acids, each containing a unique type of side chain. Protein
structure may be considered as two parts - the backbone and the side chains.
The backbone is a repeating sequence of atoms common to all amino acids
while the side chains differ based on the amino acid in each position.

Protein structure is often conceptualized as four levels of increasing
complexity: primary, secondary, tertiary and quarternary structure. Primary
structure of a protein is the amino acid sequence defined by the gene coding
for the protein. The amino acid sequence is variable in size and is believed
to encode the structure and function of the protein [Anfinsen (1973)].

Proteins have been observed to fold into regular local sub-structures
referred to as the secondary structure. Two main types of secondary structure
are observed, the alpha helix and the beta sheet. These structures exhibit
a regular geometry and are preferred because they permit the saturation
of all hydrogen bond acceptors and donors on the protein backbone. The
secondary structures fold into a globular three-dimensional structure called
the tertiary structure. This folding is driven by the hydrophobic effect
whereby the protein buries much of its hydrophobic surface in its core. The
tertiary structure is stabilized by interactions such as hydrogen bonds and
disulphide bridges. Multiple folded sub-units are arranged together to form
the quarternary structure.
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Protein Conformation

Protein structure may be defined in terms of several degrees of freedom
defined with respect to the bonded atoms. Bond distances, bond angles
and dihedral or torsional angles are sufficient to fully describe a protein’s
3-dimensional structure. Bond angles and bond distances have been observed
to be more or less invariant whereas the dihedral angles are known to vary
systematically. The variance of both the backbone dihedral angles, called φ
and ψ (Figure 1.1a), as well as the side chain dihedral angles, χ1-4 (Figure
1.1b and c), have been analysed thoroughly and these analyses have formed
the basis of current structure prediction and design techniques.

An analysis of backbone dihedral angles was performed by Ramachan-
dran and colleagues [Ramachandran et al. (1963)] which resulted in the
ramachandran plot (Figure 1.2). This plot is a representation of the allowed
and disallowed values for φ and ψ. Theoretically, φ and ψ can take values
in the range [-180,+180), however, a significant portion of this space was
found to be unsuitable because of steric constraints i.e) it is impossible to
pack atoms at most combinations of φ and ψ with favorable contacts. This
analysis also detailed the relationship between secondary structure and the
backbone dihedral angles showing that different regions of the φ-ψ space
were preferred by different local geometries (Figure 1.2). For example, the
common secondary structures, alpha helix and beta sheet were observed to
have characteristic backbone dihedral angles. The amino acids in a right-
handed alpha helix have a characteristic backbone conformation around
φ=-57◦ and ψ=-47◦ with 3.6 amino acids per turn of the helix. The beta
sheets may be parallel(φ=-119◦ and ψ=+113◦) or antiparallel (φ=-139◦

and ψ=+135◦).
The side chain dihedral space has also been studied extensively. It has

been discovered that, like the backbone dihedral space, a significant portion
of the side chain space is unsuitable. Further, side chain dihedral values
have been known to cluster in the dihedral space into regions called rotamers
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Figure 1.1: The bond distances and angles in a protein remain relatively fixed
compared to the dihedral angles. The conformation of the backbone and side
chains is determined primarily by the rotation around the dihedral angles. Panel
a) shows the backbone dihedral angles φ (C’-N-CA-C) and ψ (N-CA-C-N’) in a
tripeptide backbone, b) shows the three side chain dihedral angles χ1 (N-CA-CB-
CG), χ2 (CA-CB-CG-SD) and χ3 (CB-CG-SD-CE) on methionine and c) shows
χ1 (N-CA-CB-CG) and χ2 (CA-CB-CG-CD1) on leucine.
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Figure 1.2: a) The Ramachandran plot is a color-coded plot of the backbone
dihedral angles φ along the x-axis and ψ along the y-axis. In dark red are the
fully allowed regions with no atomic overlap, in yellow are additionally allowed
regions and in white are regions that are not allowed. The labels associate different
regions of this space with a secondary structure. b) Shows alpha helices (red) and
beta sheets (yellow) from a ribonuclear protein (PDB ID: 1L3K).
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[Zimmerman et al. (1977)]. This observation was used in the creation of
rotamer libraries [Dunbrack (2002)] which are used extensively to model
side chain flexibility in most protein modeling applications. Further, the
interdependance of backbone and side chain conformations has also been ana-
lyzed resulting in the use of backbone-dependent rotamer libraries[Dunbrack
and Karplus (1994),Chakrabarti and Pal (2001),Shapovalov and Dunbrack
(2011)]. Several software packages that make use of these libraries have been
used successfully to predict side chain conformations [Krivov et al. (2009),
Kulp et al. (2012)].

Structure prediction as energy minimization

Protein folding is a sophisticated process by which proteins attain a spe-
cific low energy state following a kinetic pathway in the energy landscape.
Proteins tend to fold into specific, stable, globular structures in order to be
functional, with the information required to achieve the folded state being
specified by the amino acid sequence. Therefore, it is believed that the
folded structure of a protein can be predicted from its amino acid sequence.
The functional forms of proteins are believed to be stable low-energy con-
formations, well seperated from other intermediate states in the protein
energy landscape. Based on this theory, the structure prediction problem is
often posed as an energy minimization problem, where the structure with
the minimum energy (as defined by a force field) is sought for the target
protein sequence. Since atoms are free to rotate about each bond in the
protein, structure prediction presents a minimization problem of very high
dimensionality which has made it inaccessible to “brute force” methods.

The protein energy landscape is believed to resemble a deep funnel
with a number of local minima [Onuchic et al. (1997)] and is modeled
using mathematical functions called force fields. Force fields are systems
of mathematical equations, with associated parameters, to describe the
energetics of molecular systems. Developing force fields that accurately
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capture the behaviour of proteins is complicated and is a field of active
research[Beauchamp et al. (2012)]. CHARMM [Brooks et al. (1983)] and
AMBER [Cornell et al. (1995),Wang et al. (2004)] are two force fields used
extensively in protein modeling, particularly in molecular dynamics, while
a wide variety of other force fields are available [Ponder and Case (2003)].
Force fields may be derived based on statistical or quantum mechanics,
called physical force fields [Brooks et al. (1983); Cornell et al. (1995); Wang
et al. (2004)] or they may consist of potentials extracted from a database of
proteins, called knowledge-based force fields [Russ and Ranganathan (2002)].
A combination of physical and knowledge-based force fields have become a
common feature of modern structure prediction and design methods.

Despite valuable insights into the folding mechanism, the determinants of
protein folding and structure are still not completely understood; resulting
in deficiencies in the force fields used to model protein folding. Even state-of-
the-art force fields are unable to completely capture the sequence-structure
specificity observed in proteins i.e) in some cases, the force fields are not
accurate enough to capture the drastic structural changes that accompany
slight sequence variations in nature. Inspite of the deficiencies, energy
minimization based on a force field is still a widely used method for most
computational protein modeling methods today.

1.3 Types of protein modeling applications

In practical applications, several variants of the structure prediction problem
have been encountered. The difficulty of protein structure prediction depends
on the specific kind of protein being studied and the scope of the study.
This section describes and attempts to classify the common scenarios where
computational modeling is employed to predict protein structure.
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Homology modeling

Homology modeling or template-based modeling refers to the structure
prediction of a protein which exhibits a high sequence identity with one or
more proteins of known structure. For example, proteins performing similar
functions in different organisms, may have similar amino acid sequences.
This sequence similarity often extends to structural similarity, where related
proteins retain their basic structure. It has been observed that 30% sequence
identity is sufficient for the successful application of homology modeling
[Xiang (2006), Nayeem et al. (2006), Wallner and Elofsson (2005)]. The
advancements in protein structure prediction are assesed by CASP (Critical
assessment of Protein Structure Prediction), a yearly conference, where
recently determined, unpublished, crystal structures are used to evaluate
the state-of-the-art in structure prediction. Results from the latest CASP10
[Kryshtafovych et al. (2013)] show that template-based modeling involving
multiple templates have improved drastically and this improvement is at-
tributed to the increase in the number of high quality protein structures
available.

Homology modeling became important with the emergence of structural
genomics initiatives which are worldwide collaborations to accelerate the
production of meaningful structural information [Goldsmith-Fischman and
Honig (2003)]. Structural genomics may help attain a structural understand-
ing of entire genomes by experimentally determining the structures of a
smaller representative subset of proteins. The experimentally determined
structure should serve as templates to model closely related proteins via
homology modeling. Computational methods for homology modeling have
been developed to this end and are being successfully employed to comple-
ment the genomics initiatives. Several software packages are available for
homology modeling [Bordoli et al. (2008),Wang et al. (2008)].

The different stages in the homology modeling of a target sequence are
1) identifying one or more homologs of known structure from the Protein
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Data Bank(PDB), 2) sequence alignment of the target with the homologs
3) modeling the aligned regions 4) modeling the loops and gaps and 5)
refining the model and side chain optimization. Sequence alignment is a well
studied problem in the field of bioinformatics and high throughput methods
like BLAST [Altschul et al. (1990)] have been deployed and used widely.
Other important components of homology modeling are loop modeling and
side chain optimization. Side chain optimization in particular requires
the sampling of a large space of conformations and can become the most
computation intensive stage of the process. Side chain optimization is
discussed in detail in chapters 2 to 4.

Molecular Docking

Docking refers to the prediction of molecular conformations when distinct
molecules are bound together, if possible, to form a stable complex. Scientific
applications may require proteins docked to other proteins, nucleic acids
or to small molecules such as drugs in an effort to study their binding
conformation and/or affinity [Ritchie (2008)]. Protein-protein docking is
important for the biochemical study of pharmaceutical compounds and a
survey of challenges in protein-protein docking is available in [Moreira et al.
(2010)]. While the design of accurate scoring functions remains the greatest
challenge in this area, modeling side chain flexibility is also an important
component for successful protein docking studies [Wang et al. (2005)]. The
problem of predicting transmembrane dimers, discussed in chapters 5 and 6,
are in a sense, examples of protein-protein docking.

Modeling based on experimental data

In many cases, no structural information is available in the form of ho-
molog structures. However, some experimental data that reveals important
structural features, such as the oligomerization state or the interacting
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interface, may be available. This experimental data may be used to trigger
a computational-experimental analysis cycle where results from one stage
feed back into the other leading to an improved model of the protein after
each stage. Typically, the results from computational modeling may help
plan biophysical experiments and/or the experimental results may guide
computational modeling.

Computational modeling is especially useful for studying protein inter-
actions when results from experimental mutation or cross-linking studies
are available. Biophysical experiments may be employed to perform protein
mutations and study their effect on protein interaction. Results from these
studies may reveal some important information. For example, disruptive
mutations that alter the behaviour of the protein may indicate interfacial
positions where sequence variation introduced by the mutation is inappropri-
ate. Similarly, silent mutations which have no impact on protein behaviour
may indicate off-interface positions where sequence variation is tolerable.
These mutation effects may be used to design geometric constraints which
can be used to prune the search space and model the interacting proteins.
The presence or absence of hydrogen bonds, disulphide bridges can also be
used to prune the search space to simplify computational modeling. This
kind of modeling typically involves backbone sampling to extract backbone
candidates that satisfy all or most of the experimental constaints followed by
side chain modeling. The granularity and quality of backbone as well as side
chain conformational sampling are the most important factors in this kind
of computational modeling. A successful case of experimental data driven
modeling of the transmembrane dimer of the FtsB protein is presented in
chapter 5.

Ab initio prediction

Ab initio prediction, along with protein design (described next) present
the most fundamental, but exciting challenges in computational modeling.
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Ab initio or de novo prediction refers to methods that attempt to predict
tertiary structure based only on the amino acid sequence. Traditionally,
these methods involve prediction of the secondary structures from sequence,
followed by conformational sampling and evaluation of tertiary sructure to
determine the global minimum energy configuration. However, with increase
in the number of available crystal structures, fragment-based methods
[Simons et al. (1997)] have proven to be superior to template-free models.

The fragment based method exploits the relationship between local
sequence and structure. Even in the absence of sequences that can be
described as homologs (> 30 % identity), several known structures with
high local sequence identity may be obtained. These high identity fragments
may be assembled using simulated annealing to predict tertiary structure
with high accuracy. This fragment-based method has been implemented in
the popular Rosetta package [Bonneau et al. (2001)].

Protein design

Computational modeling is also widely employed in protein design, also called
the inverse folding problem. Protein design is the process of determining
the protein sequence that would fold into a desired 3-dimensional structure.
The goals of protein design are manifold; it helps scientists test and refine
their knowledge of protein folding and more often, it is aimed at engineering
new proteins that can perform better or under a wider range of conditions.

Protein design begins with the identification of a target structure, followed
by a definition of the residue degrees of freedom. The residue degrees
of freedom refers to the permitted amino acids at each position of the
backbone along with sidechain flexibility. Given this framework, the goal is
to determine the amino acid sequence that folds into the target structure
and does not fold into any other state [Street and Mayo (1999),Samish et al.
(2011)]. This component which renders specificity to the sequence is called
negative design.
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The development of accurate force fields remains a major challenge for
protein design [Samish et al. (2011)]. Conformational sampling to model
side chain flexibility, discussed in detail in chapter 2, is also an important
factor which determines the quality as well as the computational cost of
protein design.

1.4 Conformational sampling in protein
modeling

Continuous, non-linear optimization techniques have been applied to protein
structure prediction prediction problems described in the previous section.
For example, molecular dynamics programs, which are computer simulations
that attempt to model the motion of proteins, predict the trajectory of atoms
by numerically solving molecular mechanics equations. These methods have
been highly successful in addressing localized dynamics or mechanistics
questions, but not very successful in predicting folding or binding. Several
advanced software packages such as NAMD[Phillips et al. (2005)] and
GROMACS [Berendsen et al. (1995)] are available to biologists. However,
molecular dynamics is computationally intensive and application to large
systems and long time scales is still limited despite advancements in computer
hardware. Several methods, including specialized hardware [Shaw et al.
(2007)], are underway to extend molecular dynamics to longer trajectories
and larger systems. Although methods that operate in continuous space
exist, they are not the focus of this research and will not be discussed further.

Techniques that discretize or sample the conformational space are com-
mon in protein structure prediction. Typical approaches involve modeling all
possible backbone and side chain conformations, using a representative set of
conformations, followed by a search to determine the global minimum energy
conformation. In these approaches, the underlying conformational space,
which is continuous, is discretized to extract a set of representative backbone
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and side chain conformations. The discretization of all levels of protein
structure, called conformational sampling, is performed to facilitate the
application of advanced search algorithms that operate efficiently in discrete
spaces. Since this sampling determines, even prior to the subsequent search,
the best attainable solution, it is an important component of the structure
prediction process. The development of effective conformational sampling
methods is therefore essential for fast and accurate structure prediction.

Side chain optimization

An important component of all the above-mentioned protein structure
prediction applications is the side chain modeling stage. Like, structure
prediction, side chain modeling is also typically performed as an energy
optimization process. Generally stated, the goal of side chain optimization
is to identify the most favorable configuration of the side chains for a
given backbone. It is a fundamental component of most protein structure
prediction and design applications. While the specific details may vary, side
chain optimization generally involves four key elements: (1) a backbone
that provides a structural template; (2) a side chain library that provides
conformational freedom to the various positions; (3) a set of physical and/or
empirical energy functions of statistical derivation for scoring; and (4)
a search strategy to identify the lowest energy state among all possible
configurations.

In many applications, side chain modeling is an independent module
employing both discretization as well as continuous optimization, and com-
binations of the two [Vasquez (1995)]. The use of discrete side chain
conformations, called rotamers or conformers, have been extremely popular
in this domain due to their speed. This thesis presents methods to improve
conformer-based side chain modeling, discussed in detail in chapters 2 to 4.



17

1.5 Overview of the thesis

This thesis describes the computational methods I have developed for the
structure prediction and analysis of membrane proteins. These proteins are
notoriously difficult to study using experimental methods. Therefore, com-
putational structure prediction is an important alternative for understanding
the structure and function of these proteins.

From a technical stand-point, structure prediction may be considered as
two almost independent stages: 1) the modeling of the backbone, followed
by 2) the optimal placement of the side chains for each backbone geometry.
Since multiple cycles of side chain optimization are often required – one for
each conformation of the backbone – side chain placement can become the
bottleneck of structure prediction methods. Therefore, fast and accurate
side chain optimization methods are essential, particularly for accelerating
high-throughput structure prediction methods. I focus on this aspect in
the first part of the thesis, which is structured in two parts. In chapters 2
to 4, I focus on methods to improve the speed and accuracy of side chain
optimization. The improved performance is important for the structure
prediction methods of membrane protein complexes, which are the topic of
the later chapters (chapters 5 and 6).

Side chain optimization (described earlier in section 1.4), is a search for
the minimum energy configuration among all the combinations of conforma-
tions allowed to each individual side chain. This combination results in an
extremely high-dimensional search space. Searching this space is simplified
by the discretization of side chain conformation, using a set of representative
conformations called “conformer libraries”. These libraries enable the use
of several algorithms that can efficiently search discrete spaces and make
the combinatorial problem of side chain modeling tractable. While these
libraries cannot be too large, for the sake of computational efficiency, they
need to provide sufficient sampling of the conformational space to ensure
accurate modeling. To achieve the best possible balance between these two
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conflicting goals, I have developed a novel criterion to create conformer
libraries based on energy – the same criterion used to select a structure in
protein prediction.

Chapter 2 describes the creation of the Energy-Based Library (EBL). I
start from an extremely fine-grained conformer library. The energy-based
method is applied to sort the list of side chain conformations according to
their propensity to fit, energetically, into side chain environments. The top
conformers selected by this process enable faster and more accurate side
chain prediction. This speedup, demonstrated by experiments on known
protein structures, is because the EBL requires a fewer number of conformers
compared to traditional libraries.

In the next two chapters, I seek further improvement of side chain op-
timization by considering aspects of individual side chains. In Chapter 3,
I describe the creation of a Backbone-dependent Energy-Based Library
(B-EBL) by considering the conformation of the local backbone. Backbone
geometry is a major determinant of side chain conformation and backbone-
dependent conformer libraries have been known to perform better in side
chain optimization. B-EBL is created by reordering the EBL, using the
same energy criterion, for each distinct region in protein backbone space.
This reordering captures the side chain preferences in these regions more ac-
curately and further reduces the number of conformers required for accurate
side chain optimization.

In Chapter 4, I recognize that every position on the protein backbone has
a different sampling requirement. For example, solvent exposed positions
require less sampling than positions in the core of a protein. This observation
may be exploited to accelerate side chain optimization if the sampling
requirement of each position can be correctly predicted. I employ powerful
machine learning algorithms to predict and allocate the required sampling
for each position on the target backbone. I adopted a 3-level classification
for the positions based on factors such as the backbone geometry, the solvent
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accessible surface area, the amino acid type and so on. Positions were
classified according to three different levels of sampling requirements (high,
average, low). This customization of sampling on a position-dependent
basis led to faster and more accurate side chain optimization. This method
highlights another important advantage of the EBL, i.e. its adjustable
sampling. The EBL is created as a sorted list of conformers that can be
truncated to any desired size. This characteristic enables tailoring the size of
the library to the needs of each individual position. Conversely, traditional
conformer libraries allowed very little choice in the number of conformers
used for an application and extracting a library of higher or lower granularity
was complicated.

The efficient conformer libraries developed in chapters 2 to 4 speed up
side chain optimization and thus, enable the development of high-throughput
methods to predict the structure of membrane protein complexes. Membrane
proteins often associate with each other to form complexes essential for their
function. Therefore, to study their function, a structural model of these
complexes is required. Sometimes, these structures need to be predicted ab
initio from their sequence, whereas in some other cases useful information is
available in the form of experimental results. In this thesis, I have developed
methods for both these situations: a structural model of the bacterial division
protein FtsB was created by interpreting experimental results (Chapter 5);
and an ab initio method (CATM) was created to predict the structure of a
common transmembrane motif at near atomic resolution (Chapter 6).

Chapter 5 describes the structural modeling of the bacterial division pro-
tein FtsB, guided by mutagenesis data. FtsB was analyzed using biochemical
techniques which revealed its self-associating tendency. Site-directed muta-
tion experiments led to a mapping of the interaction interface of the FtsB
dimer complex. I developed a computational method that interpreted this
data and created an atomistic structural model to help further experimental
analysis. The developed model corroborated the experimental results and
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enabled the functional analysis of the FtsB protein complex in vitro and in
vivo.

Chapter 6 describes the geometric analysis of the frequently occurring
GASright motif and the resulting ab initio structure prediction method called
CATM. GASright is the most common dimerization motif in membrane
proteins. It is characterized by a pair of helices crossing in a right handed
fashion and almost invariably, displays GxxxG (or GxxxA/AxxxG) sequence
patterns at the helix-helix interface. These glycines permit the helical
backbones to come in close contact resulting in the formation of networks
of carbon hydrogen bonds between the alpha carbon (Cα) donors on one
helix and carbonyl acceptors on the other helix. These hydrogen bonds,
presumably, are important for stabilizing the association of these dimers
although experimental proof is still lacking. I have addressed this issue by
performing an analysis of hydrogen bonding for all possible dimer geometries,
revealing that the GASright motif is, in fact, optimized for Cα hydrogen
bonding. Based on this analysis, I developed the high-throughput CATM
prediction program, which predicts the structure of GASright at near atomic
resolution.

I have been a major contributor to the development of the software
infrastructure on which this thesis is based [Kulp et al. (2012)]. Chapter 7
describes the open-source C++ molecular software library (MSL) used to
perform all the computational modeling described in this thesis. MSL is a set
of tools that supports a large variety of algorithms for the design, modeling,
and analysis of macromolecules. Among the main features supported by the
library are methods for applying geometric transformations and alignments,
the implementation of a rich set of energy functions, side chain optimization,
backbone manipulation, calculation of solvent accessible surface area, and
other tools - I have implemented or enhanced several of these features. MSL
has a number of unique features, such as the ability to store alternative
atomic coordinates (for modeling) and multiple amino acid identities at the
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same backbone position (for design). It has a straightforward mechanism
for extending its energy functions and can work with any type of molecules.
It allows the rapid implementation of simple tasks while fully supporting
the creation of complex applications.
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2 energy-based conformer libraries (ebl)

based on

Subramaniam S and Senes A “An Energy-Based conformer library for side
chain optimization: improved prediction and adjustable sampling”, Proteins
2012 80, 2218-34
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Summary

Side chain optimization refers to the process of determining the side chain
conformations of the global minimum energy configuration starting from a
fixed protein backbone. It is a fundamental component of protein modeling
applications such as docking, structural prediction, and design. In these
applications side chain flexibility is often provided by rotamer or conformer
libraries, which are collections of representative side chain conformations.
This chapter demonstrates that the sampling provided by the library can be
substantially improved by adding an energetic criterion to its creation. The
result of this new procedure is the energy-based library, a conformer library
selected according to the propensity of its elements to fit energetically into
natural protein environments. The new library performs outstandingly well
in side chain optimization, producing structures with significantly lower
energies and improved side chain conformation prediction. In addition,
because the library was created as an ordered list, its size can be adjusted
to any desired level. This feature provides unprecedented versatility in
tuning conformational sampling. It allows to precisely balance the number
of conformers required by each amino acid type, equalizing their chances
to fit into structural environments. It also allows the scaling of sampling
to the specific requirement of any given side optimization problem. A
rotameric version of the library is also produced with the same method to
support applications that require a dihedral-only description of side chain
conformation. This chapter is based on [?] and the libraries are available
online at http://seneslab.org/EBL.
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Figure 2.1: The side chain library predetermines the best possible accuracy of
a side chain optimization procedure. (a) The template and the energy functions
define a multidimensional landscape (here schematized in 1-D) whose dimensions
are degrees of freedom of the side chains. The global minimum of the landscape
is the ideal target of the optimization. (b) The introduction of a side chain
conformation library produces a grid that discretizes the space. (c) The search
algorithm can identify the grid point with lowest energy. Depending on the choice
of library this point may lie near or far from the global minimum of the entire
landscape.

2.1 Introduction

Generally stated, the goal of side chain optimization is to identify the most
favorable configuration of the side chains for a given backbone. It is a
fundamental component of most protein structure prediction and design
applications. While the specific details may vary, side chain optimization gen-
erally involves four key elements: (Figure 2.1) (1) a backbone that provides
a structural template; (2) a side chain library that provides conformational
freedom to the various positions; (3) a set of physical and/or empirical energy
functions of statistical derivation for scoring; and (4) a search strategy to
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identify the lowest energy state among all possible configurations.
Side chain optimization poses a difficult challenge, as the search space

grows combinatorially with the number of positions involved and their
conformational freedom. The side chain library is essential to transform
what is a continuum search space into a discretized problem for which a
number of powerful deterministic or stochastic algorithms are available (such
as Dead End Elimination [?], Branch and Bound [?], and Graph Theory [?],
Monte Carlo [?], Self Consistent Mean Field[?, ?]. It is important to remark
that the library is key to the quality of the outcome. This is demonstrated
in Figure 2.1. The theoretical target of the optimization procedure is the
global minimum of the side chain conformational energy landscape, but the
landscape is sampled only in a finite number of locations, while the rest
remains unknown. The “winner” can approach the global minimum only if
the correct side chain conformations were provided by the library. Therefore,
the choice of a library predetermines, even before the search is started, the
best possible accuracy of the procedure.

The most trivial way to increase accuracy would be increasing the size of
the library, and indeed, it has been shown that high-sampling libraries can
improve the outcome of side chain optimization [???Xiang (2006)]. Higher
sampling, however, comes at a significant computational cost as the total
number of states can easily reach an intractable number of combinations.
Another possible solution to this problem is to adopt a continuous sampling
of side chain space. The trade off is reduced efficiency, but methods such as
minDEE (minimized Dead End Elimination) [?] can be particularly suited
for protein design applications in which correct prediction of the landscape
global minimum is most critical.

Nevertheless, library-based sampling is still very popular because it is
simple to implement, it can be integrated with many algorithms and offers
a good balance between speed and accuracy, which is essential, for example,
when side chain optimization is repeated multiple times, such as in protein
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prediction methods. The questions that we ask here are: how do we improve
the library accuracy without affecting its efficiency? Or, for applications in
which speed is paramount, how do we improve the library efficiency without
affecting its accuracy? The answer to both questions is to identify, for
any given size of the library, the set of side chain conformations that will
maximize its performance, which is the goal of this work.

2.2 Rotamer Libraries

Currently, the majority of the libraries used for side chain optimization are
derivatives of statistical rotamer libraries [?Dunbrack (2002)] such as the
“Penultimate” library [?] and, most commonly, the backbone-dependent
(BBD) library of Dunbrack [??] which is still actively curated Krivov et al.
(2009); Shapovalov and Dunbrack (2011). These statistical libraries are based
on the analysis of the distribution of the amino acids’ χ angles (the torsional
rotations around bonds), which are the main determinants of side chain
conformation. The rotamer libraries define the clusters in torsional space,
providing their average, dispersion and relative population. Figure 2.2(a)
plots the rotamers for an amino acid that contains χ angles exclusively
between sp3 carbons (Leu) and one with an sp2 carbon (Asn). The nine
rotamers of Leu cluster at combinations of the classical staggered conforma-
tions, (near -60◦, 180◦, +60◦). The nine theoretical minima, however, are far
from being evenly populated because some of the rotamers are disfavored by
local conformational strains [?]. The tight clustering displayed by Leu side
chains is not observed when the side chain torsions involve an sp2 carbon,
such as in the case of the χ2 dimension of Asn, and the density is more
dispersed.

The adoption of a rotamer library allows to focus the search only on
the favorable regions of conformational space. However, the rotameric wells
are generally too wide to be covered by a single conformation. Providing
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sufficient sampling is indeed a critical issue for side chain optimization
because even small atomic clashes can prevent a favorable solution from
being identified [Wang et al. (2005); ?]. A commonly implemented scheme
to increase sampling is to expand the main rotamers with a combinatorial
addition of ±1 standard deviations in the χ1 and χ2 dimensions resulting into
a nine-fold expansion of each rotameric center. Alternatively, expansions can
be produced such that the addition of ±1 standard deviations is operated in
the χ1 or in the χ2 dimensions, producing the five-fold expansion illustrated
in Figure 2.2(a)[Krivov et al. (2009)]. While rational, such expansions are
in part arbitrary and do not consider the fact that the relative populations
of these regions can range significantly, raising the question of what would
be the most effective strategy. For example, the relative density of the nine
clusters of Leu ranges from as high as 63% of the total in one rotameric
region (+60◦/180◦ cluster) down to a mere 0.02% of the density in the
least populated region (60◦/-60◦ cluster). A distribution of sampling that
somehow reflects this bias would likely be beneficial.

An alternative approach to side chain conformational sampling is the
adoption of a conformer library [??]. These are collections of side chain
conformations extracted from high-resolution structures. They are created
from an exhaustive set of side chains that is reduced to a desired number by
removing conformers that are too similar to each other using a filter based
either on χ-angle similarity [?] or on root mean square deviation (R.M.S.D.)
[?]. The conformer libraries do not involve clustering and expansion and
are directly suitable for finegrained sampling, as they can be created in
different sizes by tuning the similarity filter. An advantage of conformer
libraries is that they retain variation of all degrees of freedom, including,
bond distances and angles, in addition to the dihedral angles. In particular,
they capture any systematic bond angle variation occurring in sterically
strained rotameric regions, which can be large enough to affect the energies
[?]. It should be noted, however, that the application of a filter based on
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geometric similarity flattens the differences between the most populated and
the rare regions. For example, while the Leu conformer library illustrated in
Figure 2.2(b) does not sample the very rare 60◦/-60◦ rotameric region, its
relative coverage of the -60◦/180◦ (63%), 180◦/60◦ (30%), 180◦/180◦ (2.6%)
and -60◦/60◦ regions (0.7%) is not proportional to their densities.

The rotamer and conformer libraries have been fundamental tools in
protein modeling and design. Particularly the seminal backbone-dependent
library is at the core of a number of modeling methods which have enabled
important achievements in prediction and design [???]. Their continued
development is important to improve accuracy and reduce run time when
applications require high throughput, high sampling, or when side chain
optimization is repeated multiple times in concert with backbone motions.
The expanded rotamer libraries and the conformer libraries are both based
on the natural distribution of side chain conformations in proteins. Both
approaches greatly reduce the size of the search space by providing good
guidance on where sampling should be allocated, excluding any regions
of conformational space that are energetically unfavorable. The question
is up to what point the natural distribution of side chain conformation
can inform how to best prioritize sampling within the rotameric regions,
and what additional information could be used to improve the sampling
strategies. An important consideration in this regard is that protein side
chains are co-evolved with their environment to complement each other.
Consistently, it has been observed that the conformational preferences of
the amino acids in the structural database reflect primarily the internal
steric constraints and local backbone interactions, and only marginally the
effects imposed by the surrounding environment [?]. On the other hand, in
side chain optimization the backbone is generally fixed, the side chains only
have discrete mobility,and the structure is unable to undergo those small
movements that would relax any minor clashes. Therefore, the primary
factor that determines the probability that a given set of representative
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Figure 2.2: χ1/χ2 plot of an expanded rotamer library, a conformer library
and the energy-based conformer library. (a) a 5-fold expansion of the Backbone
Independent library in which each rotameric region has been evenly enriched with
subrotamers that vary by ±1 S.D. in either χ1 or χ2 dimension. The figure
shows the χ1/χ2 plot (black dots) for a side chain with torsions between two sp3
carbons (Leu, 9 x 5 = 45 rotamers) and one characterized by a sp2 carbon in
the χ2 dimension (Asn, 18 x 5 = 90rotamers). The dots are overlaid on a color
coded density map of the side chain distribution in the structural database. (b)
χ1/χ2 distribution for the same two amino acids in the mid-sized (0.5 Å RMSD)
conformer library of Shetty et al. Leu: 36 conformers. Asn: 48 conformers. (c)
χ1/χ2 plot of the first 36 conformers of Leu and 48 conformers of Asn of the
energy-based Library. The numbers are chosen to allow a direct visual comparison
with the SCL (b). In the EBL the conformers are not evenly spaced but tend to
cluster with a bias that is similar to the conformational distribution observed in
the structural database.
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conformers will contain a fitting solution are the interactions of the side
chain with the environment in which it is reconstructed. It follows that in
order to maximize their chances of fitting, instead of using a pure geometric
criterion either in cartesian or torsional space, it would be preferable to space
the conformers evenly according to the energetic impact of their motions i.e.
the likelihood that a motion would produce significant energy variation.

We hypothesized that the introduction of an energetic criterion into the
selection of the conformer library would lead to more effective prioritization
of sampling in side chain optimization. The relationship between side chain
geometry and the energetic impact of their motions is complex and difficult
to derive analytically, as they depend very specifically on their structures
and the degrees of freedom altered. As illustrated in Figure 2.3, the energetic
impact is related to the number of atoms that are displaced and also to the
distance traveled by these atoms, which depends on their distance from the
axis of rotation. For example, χ1 rotations are likely to impact the energies
more than χ2 rotations because they translate more atoms and for a further
distance. For the same reason, χ1 rotations of the bulky Trp are more likely
to impact the energies than χ1 rotations of the smaller Leu. Therefore, it
is clear that χ1 should be allocated more sampling than χ2, and that the
bulky Trp should be allocated more sampling than Leu. The question is
how much more? Here we address the problem with a practical approach
based on the analysis of how an extensive library of conformers interacts
with a wide variety of natural protein environments. The data is used to
sort the conformers by their propensity to fit (energetically) into protein
environments. We have compared the resulting library with three libraries
from the literature and observed important performance improvements with
the new approach, both in energetic terms as well as side chain conformation
recovery. The approach also introduces a new beneficial feature: because the
library is sorted, the number of conformers can be resized to any desired level
of sampling. This feature provides unprecedented flexibility in adjusting,
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Figure 2.3: The energetic impact of χ angle rotations varies depending on the
χ angle and the amino acid type. The energetic impact of a rotation (i.e. the
relative change in energy) depends on the number of atoms that are moved and the
distance traveled. The cartesian distance d traveled by an atom after rotation α
is proportional to the distance r from the axis of rotation. χ1 rotations (a) rotate
more atoms over a longer distance than χ2 (b). This same rotation applied to
larger side chains, such as Trp (c), will result in even larger displacements, and
likely, greater energy variations. This is demonstrated by the different distribution
of “energy wells” when the χ rotations are applied in a fixed environment. d) The
width of the energy well is defined as the range that the angle can travel without
exceeding a threshold of 2 kcal mol −1 from the minimum energy (calculated
using the CHARMM parameter 22) during a single χ angle rotation in a fixed
environment in a protein crystal structure. e) The average well for Leu’s χ1 is
significantly narrower than χ2 (20◦ and 28◦ respectively). The bulky Trp shows
significantly narrower tolerance to rotation, with 9◦ and 11◦ of average allowed
rotation. The figure shows the distribution of energy well width for 1000 buried
Leu (max SASA 20Å2) and Trp (max SASA 60Å2) side chains in their specific
environment in high resolution crystal structures.
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even dynamically, the combinatorial size of the optimization to match the
precise needs and limits of a procedure.

2.3 Materials and methods

Structure database preparation

A collection of 2159 high resolution x-ray structures was obtained from
the Protein Data Bank (PDB) using the following conditions: resolution <
2.0 Å ; deposition date: later than 01/01/1998; method: X-ray diffraction;
molecule type: protein (no DNA, no RNA); no ligands. The proteins were
filtered to allow no more than 30% sequence identity between individual
chain. Hydrogen atoms were added with the program Reduce [?] which
also performed any necessary rotation of the hydroxyl groups, flipping the
side chain of Asn, Gln, and His and determine the protonation state of
His to optimize hydrogen bonding (-BUILD -ROTEX options). The three
protonation states of His are referred here as His-δ (neutral, protonated on
ND1), His-ε (neutral,protonated on NE2), and His-p (doubly protonated
and positively charged). The proteins were curated with an automated
procedure that rebuilt missing side chain atoms, removed multiple side chain
conformations, and converted any main chain missing amino acids into chain
termini. All protein structures were then minimized with CHARMM35
(using the CHARMM 22 potential), with 3 cycles and 50 steps of adopted
basis Newton Raphson method using a harmonic potential with a force
constant of 100 kcal mol−1Å−2 [Shapovalov and Dunbrack (2011)]. Min-
imization was required for two reasons. The bond lengths needed to be
homogenized because differences in refinement methods create variability
which is within experimental uncertainty but sufficient to produce significant
energy penalties. Minimization can also resolve the occasional small clashes
that may occur in poorly refined regions of the crystallographic models.
The minimization procedure was selected to reduce these unwanted effects
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while preserving the natural conformation observed in the crystallographic
models. The final RMSD of the crystallographic and minimized models
was on average 0.05 Å. The differences in the side chain torsion angles
are at most few degrees, and it has been previously demonstrated that
preminimization of the structures has no significant influence on side chain
prediction [?]. A typical example of crystallographic and minimized models
is shown in Supporting Information Figure S2.

Preparation of the fine grained (unsorted) conformer
library

A set of 1000 proteins was randomly selected from the structural database for
the creation of the conformer library and the selection of the environments.
All side chains with a B-factor > 40 and those with missing atoms in the
original structure were not considered. Any side chain with a Ca to Ca
distance below 8 Å from side chains with missing density was excluded in
the selection of the environments. For each amino acid type, up to 5000
side chains were randomly selected as environments (except Cys: 1614; Met:
4296; and Trp: 2734). One single set of environments was selected for all
protonation states of His. Up to 25,000 side chains were set aside for the
creation of the initial (unsorted) conformer library. The conformers were
selected at random and added to the conformer list if they had an RMSD
>0.05 Å from all other previously collected conformers (RMSD filtering).
A conformer library was created independently for the three protonation
states of His-δ, His-ε, His-p. Each conformer library was topped to 5000
conformers (except Cys: 1780; His-δ: 2906; His-ε: 4221; His-p: 542; and
Val:3916). Cys residues in disulfide bonds were excluded from the analysis.
For the creation of the rotameric version (dihedral only) of the energy-based
library, the bond lengths and angles of the conformers were standardized to
the standard values from CHARMM 22 topology prior to RMSD filtering.
The remainder of the procedure followed was the same for both conformer
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and rotamer versions of the library.

Creation of the sorted energy-based library

The fine grained conformer library was sorted by the propensity of its
elements to fit in the largest number of natural environments, creating the
energy-based library. The sorting procedure is schematically explained in
Figure 2.4. For each amino acid type, the conformer that satisfied the
largest number of environments was selected as the top conformer. All the
environments satisfied by the first conformer were marked and no longer
considered.The conformer that satisfied the largest number of remaining
environments was then selected and the process was repeated. After each
selection, however, the threshold was lowered and made more stringent:
if an environment that was previously excluded was no longer satisfied at
the lower threshold, it was put back into consideration. The process was
repeated until all conformers were sorted. The threshold was scaled down
linearly from its initial value to reach zero at the end of the sorting process.

Preparation of the benchmark libraries

Three previously published rotamer and conformer libraries of different sizes
were selected for comparison. The 5-fold expansion of the 2010 version
of the backbone-dependent library [Krivov et al. (2009); Shapovalov and
Dunbrack (2011)] (here referred as BBD5x) was built with standard bond
lengths and bond angles from CHARMM 22 topology. The rotamer library
mean rotamers were expanded by ±1 standard deviation in χ1 or χ2 but not
in both dimensions simultaneously. This led to a 5-fold expansion of amino
acids with at least two χ angles, and 3-fold expansion of amino acids with
a single χ angle. The dihedral relative to the hydrogen atom of hydroxyl
groups was sampled at the canonical -60◦,180◦, and +60◦ minima, each
one expanded by ±30◦ (9 total steps) for Ser and Thr, and every 45◦ (8
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steps) for Tyr. The expansion generated a total of 3,755 conformers (Table
A.1). The two benchmark conformer libraries selected were the “medium”
size library (0.5 Å RMSD) from Shetty et al [?]. (here referred as SCL)
which contains 1547 conformers, and a small conformer library from Xiang
and Honig [?] created from a database of 297 proteins, 100% coverage and
40◦ tolerance, which contains 1134 conformers (here referred as XCL). For
consistency, and in particular to avoid any significant differences in the
bonded energies of the conformers, both conformer libraries were subjected
to constrained minimization (conformers were built and minimized in a
Gly-X-Gly tripeptide).

Single side chain repack tests

Single side chain repack tests were performed on a set of 2000 environments
obtained from 700 proteins that were set aside from the initial structural
database for testing purposes. The test is similar to the conformer sorting
procedure, in which the native side chain found in an environment is remod-
eled into a conformer and the interaction energies are calculated. Conformers
were defined to satisfy the environment by the condition previously explained.
An environment was defined to be satisfied by a set of n conformers if at
least one of the elements satisfied the environment.

Complete protein repacks

Complete side chain repacks were performed on a subset of 560 of the 700
proteins set aside for testing purposes. All side chains were removed and
predicted except Gly, Ala, and Pro. His residues were predicted using in the
protonation state assigned by Reduce [?]. The optimization was performed
with the program repackSideChains using a sequence of algorithms: first a
run of Dead End Elimination (DEE) using Goldstein single criterion [?] was
used to reduce the combinatorial space. A round of Self Consistent Mean
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Field (100 cycles, temperature 300 K) was performed on the conformers that
were not eliminated during the DEE phase and the protein was set in the
resulting most probable state. Finally a Monte Carlo simulated annealing
procedure was run (50,000 cycles, with exponential cooling from 1000 to 0.5
K). The structure with the lowest energy identified by the Monte Carlo run
was the final product of the optimization.

Analysis

Conformation prediction of the crystallographic side chain conformation
(side chain conformation recovery) was performed by matching the χ1 and
χ2 of the predicted and crystallographic structure with a tolerance of 40◦.
The analysis was performed on all side chains and on a subset of buried
side chains. A side chain was defined buried if it had a solvent-accessible
surface area (SASA) below 25% of the maximum possible SASA for the side
chain reconstructed into a Gly-X-Gly backbone (with X being the amino
acid type under exam). The hydrogen bonding recovery was calculated
as follows. First, all side chain-to-side chain and side chain-to-backbone
hydrogen bonds were identified in the native structure if they had nonzero
energies using the explicit hydrogen bonding function. A hydrogen bond
was considered recovered if the interaction between the same donor and
acceptor had nonzero hydrogen bonding energy in the predicted structure.

Programs

All calculations (modeling, energy evaluations, conformational analysis,
SASA measurements, etc.) were performed with ad hoc programs written
using MSL [Kulp et al. (2012)], a C++ object oriented software library for
molecular modeling and analysis, which is freely distributed under an open
source license at http://msl-libraries.org. The total protein repacks were
performed with the program repackSideChains, which is distributed with
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Figure 2.4: Procedure for the creation of the energy-based conformer library.
(a) Each conformer of a fine-grained library of size N is built in each one of M
of environments that contain the same side chain type (Trp in the figure) in
protein crystal structures. The interaction energies of each conformer in each
environment are calculated and if the energy is below a certain threshold, the
conformer is considered a fit for the environment (illustrated as a green check
mark in the figure). (b) The results are stored in a NxM boolean table. The
number of environments satisfied by each conformer is determined (number under
the table). The conformer that fits the largest number of environments is the
first to be selected (black arrow). (c) The environments that were satisfied by the
first conformer are no longer considered, and the procedure is repeated to find the
conformer that would satisfy the most environments that are still uncovered. (d)
The procedure is repeated until completion. (e) The resulting library is compiled
as a ranked list, in which every additional element complements the previous. The
major advantage of ranking the conformers is that it allows the user to truncate
the library at any desired size, which is not possible with a traditional conformer
library.
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MSL.

2.4 Results and discussion

The energy-based conformer library

The energy-based library (EBL) is an extremely finegrained conformer library
sorted by the propensity of its elements to fit in a wide variety of natural
protein environments. The procedure used to derive the library,explained in
detail in the Methods section and illustrated in Figure 2.4, is the following:

1. A very finely grained library of N conformers is created for each amino
acid type.

2. A large number M of environments that contain the same amino acid
type is selected at random from high-resolution crystal structures.

3. The native side chain of each environment is remodeled into each of
the conformers, and the interaction energy between the conformer and
the environment is measured [Fig.2.4 (a)].

4. The data is collected in an N3M table of energies.

5. Each energy is converted to a boolean value, indicating if the environ-
ment is “satisfied” (True, if energy < threshold) by the conformer, or
not satisfied (False).

6. The conformer that satisfies the largest number of environments is
added to the library [Fig. 2.4(b)].

7. All environments satisfied by the conformer are marked and no longer
considered.
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8. The threshold is lowered by a small amount. Any previously satisfied
environment that would no longer be satisfied at the new more stringent
threshold is brought back for consideration.

9. The procedure is repeated from #6 until all conformers are sorted.

This procedure selects the conformers with the highest propensity to
energetically fit in environments that contain the amino acid type in natural
proteins. The first conformer selected is invariably a conformer near the
center of the most populated region of side chain conformational space. The
second conformer complements the first by covering another dense region,
most often the center of the second most populated cluster. Step 7 is the key
step that ensures this complementarity. Without step 7, the second and the
other top conformers would most likely be very close structural neighbors of
the first pick. By removing from consideration the environments satisfied by
all previous conformers, the procedure ensures that each element extends
the coverage to new areas of conformational space (the problem would be
classified as a classical Set Cover Problem in computational complexity
theory). The use of a variable threshold that becomes more stringent at
every cycle (Step 8) allows to sample further between conformers as the
library becomes larger.

The method is based on an energetic criterion for the selection of con-
formers, but it also incorporates two sources of natural conformational
bias. The fine-grained conformer library - albeit being “flattened” by the
application of a similarity filter - excludes any energetically unfavorable
regions of the conformational space. The most important factor, however,
are the environments. They were randomly selected and not filtered, and
thus the environments reflect the natural conformational preferences of
the amino acids side chains they contained. During the sorting process,
the environments essentially “vote” for conformers, and are more likely to
chose those that belong to the same rotameric region of the side chain they
originally contained. A second important aspect that is likely to affect the
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selection process is how tightly packed the environments are around their
side chain. The environments of surface exposed positions are more likely
to accommodate a variety of conformers, voting more indiscriminately than
those that belong to core positions. This aspect not only affects the selection
of the conformers, but as discussed later (in the “sampling level” section) it
also has important ramifications for balancing sampling between the various
amino acid types.

Choice of energy functions

An important initial step in defining the procedure for the creation of the
library was to identify a good choice of energy functions. All bonded terms
(bond, angle, dihedral, improper terms, from the CHARMM22 parameter
set [MacKerell et al. (1998)]) were included to penalize conformers that
are internally strained. The first function analyzed was the van der Waals
function. A common practice in side chain optimization is to soften the
repulsive component of this function, reducing the negative impact of any
small clashes that may occur, under the rationale that they would be readily
relaxed by small side chain and backbone motions in a flexible protein
structure. This is often accomplished by the adoption of ad hoc functions
and/or by rescaling the van der Waals radii [?]. Here we tested whether
the use of reduced radii was beneficial for the creation of the library. The
second issue tested was related to the electrostatics, salvation, and hydrogen
bonding functions. These three inter-related forces are notoriously difficult to
model in side chain optimization and their treatment varies widely between
applications [Krivov et al. (2009); ?); ?]. The simple inclusion of partial
charges may not improve side chain prediction when the effect of solvent
are unaccounted for [??]. Moreover, the hydrogen bond âŁ” a key factor in
predicting the structural organization of protein folds and proteinâŁ“protein
interfaces âŁ” has a complex geometry dependency and is not well modeled
by an integration of Coulomb and Lennard-Jones interactions [?]. To try
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to maximize the hydrogen bonding prediction capabilities of the library
we chose to test three simple conditions: (1) pure coulombic interactions,
(2) an explicit hydrogen bonding function without the electrostatic term,
and (3) an equal weight of both terms. We selected the hydrogen bonding
function implemented in the SCWRL4 program[Krivov et al. (2009)] because
it is based on elements of the CHARMM force field and has multiple angle
dependencies.

To test van der Waals radii rescaling, we created three separate conformer
libraries using 100% (full), 95% and 90% radii. We tested the libraries in a
series of procedures in which a single side chain was placed in fixed protein
environment (referred here as “single side chain repacks”). In the procedure
we determine what percentage of the environments was satisfied by each
truncation of N conformers of the library (for N = 1 to the size of the library).
A direct comparison of the performance of the resulting libraries, performed
under all three conditions, that is, 100, 95, and 90% radii, revealed minor
differences and did not identify a significant advantage in using rescaled
radii. In the second test we found that the repacking efficiencies were similar
but the hydrogen bonding recovery was higher when an explicit hydrogen
bond function was used without electrostatics. These conditions were chosen
for the remainder of the work.

The energy-based library

The energy-based library is a sorted conformer library of up to 5000 con-
formers for each amino acid type, except Gly, Ala, and Pro (Table A.2).
The three protonation states of His were treated separately because they
are chemically distinct (referred here as His-δ: neutral, protonated on ND1;
His-ε: neutral,protonated on NE2; and His-p: charged). A library of 5000
conformers per amino acid is exceedingly large but the sorted list can be
truncated to any desired number of elements. Figure 2.2(c) shows a plot
in χ1/χ2 coordinates of the top ranking elements of the EBL library of
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Leu and Asn. To allow a direct visual comparison with the conformer
library of panel b, the number of conformers shown is identical. The EBL
conformers are less evenly spaced and have a higher propensity to sample
the most common regions, which is particularly evident in the case of Leu.
To illustrate the precise order in which the conformers are ranked and how
the algorithm initially prioritizes sampling of the most populated area and
gradually extends coverage, Figure 4 shows a “walk” through the first 12
conformers of Trp. The first conformer lands in the center of the -60◦/90◦

region (35% of the total density), which is sampled six times within the first
12 conformers. The library then visits the second most populated region
(-180◦/90◦, 14% of the density) and remaining conformers gradually extend
sampling, roughly in the order of the relative density of the clusters. The
structural superimposition of the first twelve Trp conformers in Figure 2.5(b)
shows how the conformers complement their coverage of tridimensional space.
Even the closely spaced conformers that belong to the -60◦/90◦ region are
sufficiently shifted by χ1 and χ2 variations (and in parts also by bond angle
variations) to cover different portions of tridimensional space.

Selection of benchmark libraries for testing

To test the performance of the energy-based library we selected three previ-
ously published libraries: (1) a 5-fold expansion of the backbone-dependent
rotamer library of Dunbrack [?Shapovalov and Dunbrack (2011)] (BBD5x);
(2) a medium-size conformer library from ? (SCL, for Shetty Conformer
Library); and (3) a small conformer library from ? (XCL). The bench-
marks were chosen based on their sizes, to compare the performance of the
EBL over a range of sampling levels. The backbone-dependent library is
the most popular rotamer library in the literature. The expansion scheme
adopted is the one implemented in SCWRL4 [Krivov et al. (2009)], in which
“sub-rotamers” are added by expanding either χ1 or χ2 by ±1 S.D. but not
both at the same time (illustrated in Fig. 2.2). The version of the BBD
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Figure 2.5: A “walk” in Trp space. (a) χ1/χ2 plot of the first 12 conformers of
Trp overlaid on a color coded density map of the side chain distribution in the
structural database. The most populated region (-60◦/90◦) is sampled multiple
times while the coverage gradually extends to the other regions of density. (b)
Structural representation using the same color coding of panel a. The figure
demonstrates how the conformers are arranged to cover complementary regions of
tridimensional space.

library adopted is the most recent [Shapovalov and Dunbrack (2011)], as it
demonstrated significant performance enhancement compared to the previ-
ous version [?] in our preliminary tests. The BBD5x contains a total of 3755
conformers, which were built with the bond lengths and bond angles defined
in the CHARMM 22 topology file. The SCL selected was the intermediate
possibility (0.5 Å R.M.S.D. similarity filter), which contains a total of 1549
conformers. The conformer libraries of Xiang and Honig are at the core
of SCAP and Jackal, a suite for modeling and analysis [?]. Among the
many possible sizes, we selected the library derived from 297 proteins with
100% coverage and 408 bins totaling 1136 conformers, which provided the
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opportunity to test the EBL at a relatively low level of sampling.

Performance test using single side chain repacks

To test the performance of each individual amino acid of the new library
against the benchmarks we first performed a series of single side chain repacks
in fixed protein environment using a set of proteins that was set aside for
testing purposes. The results are shown in Figure 2.6. The histograms
show the total number of EBL conformers that are necessary to match
the performance of the benchmark library. The data was obtained in the
following way: for each individual amino acid we calculated the fraction of
protein environments that was satisfied by at least one of the conformers
of the benchmark library and then we determined the number of EBL
conformers that were necessary to satisfy the same fraction of environments.
In all cases the difference in performance is extremely significant. All across
the three comparisons, the sampling requirements of the EBL are always
lower, often by a factor or 10 or more and always by at least a factor of 2.
These results demonstrate that the EBL conformers have a high propensity
to fit into protein environments that should be able to accommodate the
side chain, which was the original premise behind the selection procedure.
The next question was whether the improved performance would also be
observed in side chain optimization procedures in which multiple side chains
are modeled at the same time.

Performance test using total protein side chain
predictions

We tested the energy-based library in a series of protein side chain prediction
runs in which all positions in a protein (excluding Gly, Ala, and Pro) were
remodeled using side chain optimization (referred here as total protein
repacks). The scatter plots in Figure 2.7(a) compare the final energies of
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Figure 2.6: Performance test on single environment repacks. The figure compares
the number of conformers that are required for equivalent performance between the
energy-based library and three benchmark libraries (BBD5x: 5-fold expansion of
the 2010 backbone-dependent library; SCL:a medium conformer library from Shetty
et al.; XCL: a medium conformer library from Xiang and Honig). The number of
conformers of the benchmarks is a fixed number (blue bar). We determined the
fraction of environments that are satisfied by at least one of these conformers. The
red bar represents the number of EBL conformers that are required to satisfy the
same fraction of environments. For example, the XCL has 334 Arg conformers,
which satisfy 55.0% of Arg environments. It takes only 19 conformers of the
EBL to satisfy at least the same fraction.
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a set of 560 proteins after optimization with the EBL against the three
benchmarks. In these repacks the number of conformers for each individual
amino acid was exactly matched to the benchmark library. In all comparisons
the majority of the points lay above the diagonal (97.3% against the BBD5x,
88.8% against the SCL, and 73.1% against the XCL), demonstrating that
the EBL is much more likely to reach lower energy solutions. For ease of
comparison, the energies are plotted after subtracting the “crystal energy”,
that is the energy of the native structure after constrained minimization.
The crystal energy is used here solely as a convenient reference under the
assumption that in many cases, but certainly not in all, the minimized
crystal structure is devoid of strains and represents a good target for an
optimization. Panels b of Figure 2.8 represents the same data of panel a in
histogram form. This view highlights the distribution of energies obtained
with the different libraries with respect to the crystal energy (zero value). In
the three sets of calculations the EBL fares well, with a number of solutions
below the crystal energy (87.3%, 70.8%, 32.0%) that is significantly higher
than the respective benchmarks (BBD5x 13.3%, SCL 10.3%,and XCL 1.0%,
respectively). The modes of the energy distributions are shifted by hundreds
of kcal mol−1 compared to those of the benchmarks. It should also be
noted that even at the lowest level of sampling (1136, the same number
of conformers of the XCL) the EBL produces a number of proteins below
crystal energy that is greater than the larger SCL (1549 conformers) and the
BBD5x (3755 conformers). The data demonstrates that the introduction
of an energetic criterion in the creation of the conformer library greatly
enhanced the energetic performance of the library in side chain optimization.

Sampling levels

In the first performance test, the number of conformers of the energy-based
library was matched exactly with the respective benchmark library. However,
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Figure 2.7: Performance of the energy-based library in total protein repacks. (a)
The scatter plots graph the final energy after optimization of all side chains in
560 proteins, for the energy-based library (EBL, x axis) and three representative
rotamer and conformer libraries (see Methods). The majority of the points lie
above the diagonal indicating that the EBL on average achieves better performance
that the benchmarks. For easier comparison energies are plotted after subtracting
the energy of the minimized crystal structure. (b) Representation of the same
data as histograms. The dashed line separates the proteins that score better
than the crystal energy (percentages indicated), a convenient reference under the
assumption that in most cases it represents a good target for an optimization. In
a and b the calculations were made with an equal number of conformers compared
to the benchmark for each amino acid type (equal sampling). The BBD53 has
3,755 conformers, the SCL 1,549 and the XCL 1,136. Panels c and d report the
results of the same calculation performed using EBL sampling levels of similar
total complexity of that of the benchmarks.
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since the number of conformers can be adjusted to any desired number, it
is possible that the optimal distribution of sampling between the various
amino acid types could be different. We addressed this question using data
from the single side chain repacks against fixed protein environments. We
determined the number of conformers that are required to satisfy a certain
percentage of protein environments in the test set. This led to the creation
of a series of “sampling levels” which, at least in principle, should provide
each amino acid type with an equal chance to fit into protein environments.
We created 14 levels, from very sparse sampling (282 total conformers in
the 60% level) up to very high sampling (6985 conformers in the 99% level).
The percentage refers to the number of environments that are energetically
satisfied by the set of conformers in single side chain repacks. These levels
will be referred as SL60 (Sampling Level 60%) to SL99. The number of
conformers in each sampling level is reported in Table A.3. The balance
within each level is consistent with the expectation that larger amino acids
would require more sampling than smaller amino acids. A second factor that
presumably contributes is the propensity of an amino acid type to occur in
tightly packed positions (which likely require more sampling) versus solvent
exposed positions (which can be satisfied by a larger variety of conformers).
A substantially larger number of conformers is given to amino acids with
hydroxyl groups compared to other amino acids with similar structure (for
example, Thr vs Val, and Phe vs Tyr), an indication that a significant
amount of sampling is required to satisfy hydrogen bonding.

Complete protein repacks using the EBL sampling
levels

The total repack tests of the same set of 560 proteins were repeated using
the sampling levels. The results are shown in Figure 2.7(c,d). Since the
number of conformers for each individual amino acid is no longer matched
to the benchmark libraries, to ensure a fair comparison we matched the



49

total combinatorial complexity of the search space, that is the product of
the number of conformers given to each position. The total combinatorial
complexity of each optimization was calculated for the benchmark library,
and the same protein was repacked with the largest EBL sampling level that
did not exceed the benchmarkâŁ™s total complexity. It should be noted that
this criterion always puts the EBL at a disadvantage, at times minimally, at
times significantly, ensuring a stringent test. The most frequently selected
levels were (in order of frequency) the SL95, SL96, and SL92.5 against the
BBD53 library, the SL85, SL87.5, and SL82.5 against the SCL, and the SL80,
SL75, and SL82.5 against the XCL. This discussion will refer to this strategy
as “sampling levels” and to the previous strategy, in which benchmark and
EBL were equally matched, as “equal sampling”.

Optimization with the sampling levels produced a significant improve-
ment of the energies in the comparisons against two of the three libraries,
the BBD5x and XCL. In the comparison against the BBD5x library, the
fraction of proteins below the crystal energy increased from 87.3% to 91.8%.
This improvement can be appreciated visually by comparing the frequency
of proteins just above zero energy in Figure 2.7(b,d). The most significant
improvement was found in the comparison against the smallest of the three
libraries, the XCL. In this case the number of proteins below crystal energy
almost doubled, going from 32.0% to 57.5%. The introduction of sampling
levels was not as beneficial in the test against the SCL (the number of
proteins below crystal energy increased from 70.8% to 72.0%). It should
be noted, however, that the adopted strategy to compare with the “equal
sampling” puts the “sampling levels” strategy at disadvantage and likely
contributes for this small improvement. This can be appreciated by com-
paring the total size of the most commonly used sampling levels. The main
sampling levels used against the SCL (SL85, SL87.5, and SL82.5 levels, with
1231, 1464, and 1039 conformers, respectively) are all smaller in size than
the size of the “equal sampling” strategy (1549 conformers).
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In fairness, it should also be noted that the overall size of the BBD53 can
be reduced by excluding the most rare rotamers from the library [?Krivov
et al. (2009)]. If this filtering is applied to maintain at least 99% of the
cumulative density, the total complexity of the BBD5x in total repacks
decreases approximately to the same level of the SCL. The application of
a 90% filter reduces the BBD5x to approximately the XCL complexity. If
we compare the energetic performance of the EBL at the reduced sampling
levels of the SCL and XCL [Fig. 2.7(d), center and right panels, red areas]
against the full-size BBD5x [Fig. 2.77(d), left panel, green area] we observe,
however, that the smaller size EBLs still maintain a significant edge against
the full size BBD5x. This advantage is likely in part due to the fact that
with the EBL some representation of these rare areas can still be maintained
while sampling is gradually reduced, while with a transitional rotamer library
entire rotameric regions need to be completely removed.

Recovery of crystal structure conformation

After establishing that the energy-based library performs well in total protein
repacks from an energetic stand point, we investigated if the performance
translated to improved prediction of side chain conformation. Figure 2.8
shows the recovery of the side chain crystallographic conformations in the
560 total repacks (buried positions only, χ1+χ2, with a tolerance threshold
of 40◦). In the conditions tested the EBL recovers on average nearly 80% of
all side chain conformations, ranging from about 55% (Ser) to 90% (Phe,
Tyr, and Val). In all three comparisons, the EBL performs better than the
relative benchmark, by 18% against the BBD5x library, by 16% against the
SCL, and by a substantial 118% margin against the smaller XCL. The use of
sampling levels (EBL-lev) resulted in a slight improvement of the recoveries
compared with “equal sampling” (EBL-eq). Comparing the performance of
the EBL in the three trials, it is remarkable that the total χ1+χ2 recovery is
already high at the lowest sampling levels (78.8% recovery in the test against
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the XCL) and does not further grow substantially (79.4% against the SCL
and 80.3% against the BBD5x). In comparison, the energies significantly
improved at every increase of sampling size (Fig. 2.7). This is an interesting
finding that suggests that the lowest sampling levels could be effective in
side chain optimization, particularly if used with a softened van der Waals
function. The R.M.S.D. analysis of the repacked structures compared to
the native structures provides further confirmation that the EBL achieves
superior performance in side chain prediction. The R.M.S.D. obtained with
the EBL is significantly lower than that observed with the benchmarks (1.55
Å to 1.85 Å , Table 2.1) even at the lowest sampling level (1.38 Å ). The
data relative to χ1+χ2 recovery of all side chains (independently of burial)
is shown in Figure A.4. As expected the average recovery drops significantly
compared with the buried positions (66% for all three tests) but the overall
trend remains similar.

Figure 2.10 examines the hydrogen bond recovery in the protein repacks.
The figure reports the fraction of the hydrogen bonds present in the original
structure that were correctly predicted. In the three tests, the energy-based
library recovers between 47% and 60% of the crystallographic hydrogen
bonds. Unlike the χ1+χ2 recoveries, here we observed an improvement
as sampling increases (47.5%, 52.5%, and 60.0% against the XCL, SCL,
and BBD5x, respectively). It should be noted that while not all hydrogen
bonds are correctly predicted, the total number of hydrogen bonds in the
repacks exceeds that of the crystal structures (Figure 2.11), which is likely a
consequence of the absence of solvent (implicit or explicit) in the calculations.
Once again, the new library’s performance demonstrated to be outstanding.
Compared with the benchmarks, the total recovery was higher by 112%
(BBD5x), 115% (SCL), and 125% (XCL), an improvement that is even more
marked than what is observed for the χ1+χ2 recoveries. Although in all
three tests the total recovery is very similar for the “equal sampling” and
“sampling levels” strategies, at the level of the individual amino acids there
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Figure 2.8: Recovery of the crystallographic side chain conformation in total
protein repacks. Recoveries obtained with the EBL are compared to (a) the BBD5x,
(b) the SCL, and (c) the XCL. The data is expressed as χ1+χ2 recovery with a
tolerance of ±40◦ for buried side chains (<25% SASA). The orange bar represents
the recovery in repacks made with an equal (eq) number of conformers compared
with the benchmark for each amino acid type. The red bar represents the recovery
in side chain optimizations made using an EBL sampling level (lev) of similar
complexity with respect to the benchmark. With very few exceptions, the EBL
performs better than the benchmark, often significantly. In Figure A.5 the data is
dissected by χ1, χ1+χ2,χ1+χ2+χ3, χ1+χ2+χ3+χ4 recoveries. The data relative
to all positions, independently of burial, is shown in Figure 2.9.
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Figure 2.9: Recovery of the crystallographic side chain conformation in total
protein repacks for all side chains independently of solvent exposure. Recoveries
obtained with the EBL are compared to a) the BBD5x, b) the SCL and c) the
XCL. The data is expressed as χ1+χ2 recovery with a tolerance of ±40◦. The
orange bar represents the recovery in repacks made with an equal (eq) number of
conformers compared to the benchmark for each amino acid type. The red bar
represents the recovery in side chain optimizations made using an EBL sampling
level (lev) of similar complexity with respect to the benchmark.
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Figure 2.10: Recovery of the crystallographic hydrogen bonds in total protein
repacks. Recoveries obtained with the EBL are compared to (a) the BBD5x, (b)
the SCL, and (c) the XCL. The data indicates if a hydrogen bond present in
the original crystal structure is recovered after side chain optimization. Any
hydrogen bonds that are observed in the repacked structure but are not present in
the original structure were not considered. The EBL demonstrated significantly
better recoveries in all three cases.
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were noticeable differences.

Experiment Benchmark EBL, equal sampling EBL, sampling levels
BBD5x 1.63 ± 0.36 Å 1.38 ± 0.35 Å 1.35 ± 0.33 Å
SCL 1.55 ± 0.32 Å 1.41 ± 0.36 Å 1.37 ± 0.33 Å
XCL 1.85 ± 0.34 Å 1.48 ± 0.34 Å 1.38 ± 0.33 Å

Table 2.1: Average Root Mean Square Deviation of Total Repacks Compared with
the Native Crystal Structure. The table reports the average RMSDs (Å standard
deviation) between the predicted side chains of each protein and the native crystal
structure. The set includes only buried side chains (<25% SASA) and all atoms
(heavy and hydrogen atoms).

Overall the three measures - energy, side chain conformation recovery,
and hydrogen bond recovery, depict an extremely favorable portrait of the
energy-based library. The library displays superior performance in side chain
optimization across a range of sampling levels. This efficiency, combined
with its unique flexibility in rescaling sampling, means that the library can
be a powerful and versatile tool that can be tailored precisely to improve
quality and/or decrease run time in side chain optimization procedure.

Analysis of sampling levels

The three sets of total protein repacks demonstrated that increase in sampling
produces substantial decrease of the energy. The 14 sampling levels proposed
here, from SL60 to SL99, vary in the total number of conformers by a factor of
25 (Table A.3). To gain more precise information on their relative efficiency,
we performed a series of total repacks systematically at each individual level
on a random subset of 40 proteins. Figure 2.12 summarizes the results of
this trial. In the figure the highest level (SL99) is chosen as the reference.
The histograms shows the number of proteins that reached an energy within
a threshold of 2, 10, or 20 kcal mol−1 from the energy obtained with the
SL99. The data indicates that to obtain approximately a 50% chance that a
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Figure 2.11: Total number of hydrogen bonds in the native crystal structure
and in predicted structures. The histogram reports the total number of side chain-
to-side chain and side chain-to-backbone hydrogen bonds in the crystal structure
(Xtal), in structures predicted with one of the benchmark libraries (a: BB5x, b:
SCL, c: XCL), and in structures predicted using the EBL with either sampling
equal to the benchmark library (EBL-eq), or with sampling provided by EBL
sampling levels of comparable complexity (EBL-lev).
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Figure 2.12: Comparison of the energetic performance of the EBL sampling
levels. Forty proteins were repacked at each of the 14 proposed levels (from SL60
to SL99). The figure shows the number of proteins that had an energy below the
energy of its SL99 optimization plus a threshold of 2, 10, or 50 kcal/mol. The
results demonstrate a gradual increase in performance between the levels.

protein energy is within 50 kcal mol−1 of its SL99 energy, one should adopt
at least the SL90 level (1795 conformers). At the SL95 (2910 conformers)
about half of the proteins are within 10 kcal mol−1 from the best level. To
obtain the same proportion below the 2 kcal mol−1 threshold the levels
required are the SL97 (3938) or the SL98 (4786 conformers). The most
important observation, however, is that the levels display a continuum and
relatively smooth increase in performance. Although it is likely that an
intensive analysis of performance based on total protein repack data would
lead to the creation of even more effective levels, the data demonstrates that
the proposed levels based on single side chain repacks are a suitable option.

An energy-based rotamer library

The method used for the creation of the energy-based conformer library
can also be applied for the generation of a dihedral-only rotamer library.
To create this library we standardized the bond lengths and angles of the
extremely fine grained library, and followed the same procedure (RMSD
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filtering, rebuilding in protein environments, energy-based sorting). Figure
2.4 shows a comparison of the performance of the Energy-Based Rotamer
library (EBRL) against the BBD5x library. Although the performance of
the EBRL is significantly decreased with respect to the conformer version,
the rotamer version compares favorably against the benchmark. The EBRL
scores better energies in 89.4% of the proteins compared to the BBD5x
library. The percentage below crystal energy drops from 91.8% to 35.8%,
but it remains significantly higher than the benchmark. The average side
chain recoveries also drop (Supporting Information Fig. S9) but they still
compare favorably against the benchmark. The data indicates that the
conformers approach is substantially more effective than the use of rotamers.
Nevertheless, the energy-based Rotamer library can be a useful alternative
for applications that could benefit from the efficient and flexible sampling
offered by an energy sorted library but require the use of a dihedral-only
rotamer representation.

Performance of the energy-based rotamer library (EBRL) in total protein
repacks. (a) The scatter plots and (b) histograms representation of the final
energy after side chains optimization of 560 proteins, for the energy-based
rotamer library compared to the BBD53 library. While the performance of
the rotameric version of the energy-based library is decreased compared to
the conformer library (Fig. 2.7 ), it represents an efficient alternative for
applications that required a dihedral-only representation of the library.

2.5 Conclusions

We have presented a new type of conformer library for protein modeling
that introduces a number of innovations in side chain sampling. The library
is in essence a sorted fine-grained conformer library. The library is so large
that it needs to be trimmed down for most practical purposes, although
an application that requires extremely precise positioning and is not of
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Figure 2.13: Recovery of the crystallographic side chain conformation in total
protein repacks for the Energy-Based Rotamer Library (EBRL). Recoveries ob-
tained with the EBRL are compared to the BBD5x (blue) and the EBL conformer
library (red). The data is expressed as χ1+χ2 recovery with a tolerance of ±40◦.
The EBL and EBRL data represents the recovery in side chain optimizations made
using a sampling level (lev) of similar complexity with respect to the benchmark.

highly combinatorial nature could benefit from its exhaustive sampling. The
method for sorting the energy-based library takes into account not only the
conformational propensities of the side chains but also the nature of protein
environments that host them. The selection of the conformers was made
with an energetic criterion, under the hypothesis that using the same metric
that selects the “winner” in a side chain optimization procedure would lead
to a more efficient distribution of sampling. The results demonstrate that
the strategy indeed provides important performance improvements.

The fact that the library is sorted and can be resized to any desired
number represents per se a unique and important new feature. It introduces
an unprecedented level of versatility in adjusting conformational sampling
to match the specific needs of a modeling procedure. It allows to control
the quality of the outcome and to meet any speed or memory requirements.
The scalability of the library is also important for balancing the relative
amount of sampling given to the different amino acid types and equalize their
chances to fit in spaces that should accommodate them. Here we propose a
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series of sampling levels that gradually increase the libraryâŁ™s granularity
while maintaining the mentioned balance. The versatility of the library can
also be an important asset for developing more effective side chain sampling
strategies. We have recently shown that that transferring sampling from
positions that are likely to be satisfied by a variety of conformers (such
as a relatively isolated solvent exposed position) to those that require a
conformer from a very narrow and specific range (such as a tightly packed
core position) can improve the economy of the calculation and the resulting
energies (described in the next chapter [?]). The scalability of the EBL
enables this and other similar strategies, opening new avenues for further
improving performance in side chain optimization.

Compared with the current libraries, the EBL achieves significantly lower
energies in side chain optimization. This is certainly a positive finding as it
indicates that the EBL is very effective in exploring the energy landscape
(Fig. 2.1). For this reason the library could aid the continued development
of effective energy functions for protein prediction and reduce the need
for artificial softening of the van der Waals function [??]. The fact that
the EBL was tested with the same energy functions used for its creation
may raise a concern that the performance could be in part due to over-
training of the libraries to perform well with these specific functions. It is
therefore important to note that the native structure recovery parameters
testedâŁ”specifically the dihedral prediction, the hydrogen bonding recovery
and the RMSD with the native structureâŁ”all improve alongside with the
energies, indicating that the library captures well the physical aspects that
determine side chain conformation in proteins. More tests will be necessary
to understand how performance will be affected when the library is used
with different energy functions. Our functions were selected specifically
to favor efficient packing, hydrogen bonding and to prevent strains, which
are factors that are present in a majority of modeling programs, and thus
we are confident that the enhancement will translate well when the library



61

is used with different functions. While nothing prevents the users from
modifying their programs to adopt a set of functions similar to ours, should
that be advantageous, we also encourage others to adopt the method to
create specific energy-based libraries optimized ad hoc with the energy
functions used in their own applications. A tutorial on how to create a
library is made available on the EBL web site (http://seneslab.org/EBL)
and all software and databases required for building a similar library are
freely provided. The energy-based library and the dihedral-only version
are distributed in our website. The format of the library is described in
Figure A.2. All software used to create the EBL, the modules for reading the
library, building conformers from internal coordinates, and for performing
side chain optimization are implemented in C++ using the MSL package
(http://msl-libraries.org), a suite of molecular modeling tools freely available
for download under an open source GPL v.3 license. MSL is described in
detail in chapter 7.
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3 backbone-dependent energy-based
conformer libraries (b-ebl)

based on

Subramaniam S and Senes A “A backbone-dependent energy-based con-
former library improves side chain optimization” (manuscript in preparation)
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Summary

Protein side chain modeling is an integral component of most protein mod-
eling applications and being computationally intensive, often constitutes
the bottleneck stage in these applications. Side chain modeling consists of
three widely studied components; an energy function to evaluate candidate
structures, a side chain conformer library that presents a discrete side chain
conformational space and a search algorithm that explores this combinatorial
space. In chapter 2, we developed an energy-based algorithm to extract
a side chain conformation library from high resolution protein structures.
The resultant backbone-independent energy-based library called the EBL [?]
outperformed other widely used conformer libraries. This chapter describes
a backbone-dependent energy-based conformer library (B-EBL), that com-
bines the energy-based approach with the backbone-dependence of side chain
conformations to produce a superior side chain conformation library. This
new library is shown to perform better than EBL in terms of the dihedral
recovery and the energies achieved on a set of 480 high resolution protein
structures. We also show, through single repack experiments, that fewer
conformers from B-EBL better represent the side chain conformational space
given the local backbone geometry.

3.1 Introduction

Side chain optimization is the process of predicting the 3-dimensional con-
formation of the side chains given a protein backbone. It is an important
and widely studied component of several protein modeling applications
such as homology modeling [?Nayeem et al. (2006); Wallner and Elofsson
(2005); Bordoli et al. (2008); Wang et al. (2008)], structure prediction [Wang
et al. (2008); ?); ?] , protein design [?Street and Mayo (1999); ?); Samish
et al. (2011)], point mutation analysis [??], protein -protein and protein-
ligand docking [?Wang et al. (2005)] and structure refinement [??]. In side



64

chain optimization, the combinatorial space of side chain conformations is
searched in order to identify the lowest energy state, which is scored with
a variety of physics-based [Brooks et al. (1983); Cornell et al. (1995)] or
knowledge-based potential functions [?]. Since the conformational space
of side chains is extensive but sparsely populated, this space is generally
searched by adopting a library of discrete side chain conformations. The
library converts a multi-dimensional problem in continuous space into a
combinatorial problem in discrete space, facilitating the application of a
number of fast, deterministic [???] and probabilistic algorithms for deter-
mining the global minimum energy conformation [???]. In addition, the
discretization allows the search algorithms to focus on those areas of side
chain conformational space that occur frequently in proteins and discard
those that are very rarely encountered.

The discrete libraries used for side chain modeling can be of different
derivation, the most common alternatives being rotamer and conformer
libraries. The rotamer libraries [??Shapovalov and Dunbrack (2011)] are
compiled using a statistical analysis of the distribution of the side chain
dihedral angles (χ angles) which are the major determinants of side chain
conformation. This approach is based on clustering the distribution of side
chain conformations observed in the structural database, the Protein Data
Bank (PDB). The clusters are reported by indicating their average, standard
deviation, and their overall frequency of χ angle combinations. The rotamer
libraries generally do not report bond angles and bond lengths, which are
only minor determinants of conformation. Therefore, when rotamer libraries
are applied to side chain prediction, these variables are generally held fixed
at some optimal value.

A second approach is represented by the conformer libraries [???] which
are compiled by extracting a representative subset of side chain conformations
from native structures found in the Protein Data Bank (PDB), chosen so
as to represent the most populated regions of conformational space. This
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is done by extracting a large number of conformations from the structural
database, which are then reduced to a manageable subset by applying a
similarity filter, such as angular similarity [?] or root mean square deviation
(RMSD) [??]]. Because the selected conformers are actual side chains found
in natural proteins, the conformer libraries retain the native bond lengths
and angles variation observed in proteins, which can be beneficial [?].

An important issue with both rotamer and conformer libraries is that of
controlling the specific granularity of the sampling. Side chain optimization
is a combinatorial search that can be computation-intensive and can become
a serious bottleneck, particularly if the number of side chains involved is large
or if multiple side chain optimizations are required by the application. For
example, our group uses side chain optimization in the structure prediction
of complexes of transmembrane helices, either ab initio [?], or guided by
experimentally derived data [?]. These methods require extensive exploration
of backbone conformational space, and the side chain optimization required
at each cycle represents the major bottleneck of the procedure. Therefore,
it is important to find the level of sampling level that provides the best
compromise between two conflicting requirements: i) minimization of the
number of conformations, in order to improve computational efficiency, and
ii) maximization of conformational sampling, to achieve the desired level of
accuracy [??].

To address this challenge, we introduced the energy-based Library (EBL),
a conformer library provided as a sorted list that can be truncated precisely
at any desired level of granularity [?]. While the previously available rotamer
and conformer libraries may be produced in different sizes to achieve better
performance [???], the EBL enables much finer control making it possible
to control the size of the library at the level of the individual conformer.
As a result of this finer control, the EBL also introduced the concept of
sampling levels, a way to control the level of granularity of the library (from
low to prioritize speed, to high to prioritize accuracy) while ensuring that
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sampling remains balanced between the different amino acid types.
In addition to the customizable granularity, perhaps the most important

feature of the EBL is its improved efficiency in side chain optimization. The
EBL was constructed under the realization that the adoption of an energetic
criterion for the selection of the conformers (i.e., the same metric used in
side chain optimization) produces a library with enhanced performance. The
EBL was obtained by remodeling a large number of individual positions in
known crystal structures with all conformers in a very fine-grained library,
and energetically evaluating the interactions between the conformers and
the protein environments (Figure 2.4). This large data set was used to sort
the conformers by their propensity to fit (energetically) into natural pro-
tein environments thereby producing a very efficient backbone-independent
library. This new strategy for creating a conformer library resulted in a
enhanced product that had improved computational efficiency (EBL requires
fewer conformers for the same accuracy) as well as modeling accuracy (EBL
obtains lower energies and better dihedral prediction for a similar number
of conformers), in comparison to state-of-the-art libraries.

The EBL was initially developed as a backbone independent conformer
library because a large dataset of crystal structures was required for its
creation. This requirement posed difficulties in obtaining sufficient envi-
ronments for the method once the available side chain environments were
subdivided according to their φ/ψ coordinates However, it is well established
that side chain conformation is strongly dependent on the local backbone
geometry [Chakrabarti and Pal (2001)]. This dependence is not simply based
on the secondary structure because small changes in φ/ψ angles within the
same structural classification (helix, sheet) can produce significant variations
in the rotameric distribution [Shapovalov and Dunbrack (2011); Dunbrack
and Karplus (1994); ?]. In addition, local variations of backbone confor-
mation can also influence the average value of side chain χ angles to relax
strained interactions between the side chain and the backbone [Dunbrack
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(2002)]. Consistently, it has been shown before that a backbone dependent
library performs significantly better than a backbone independent library
[Dunbrack (2002)].

Here, we present a backbone dependent version of the EBL, which
we call B-EBL. We have tested a library that is created in a backbone-
dependent fashion for the most populated regions of the φ/ψ space, and
a single EBL calculated for the sparse regions. we demonstrate that this
version achieves significantly better performance than the original EBL. A
comparison of performance in side chain prediction operating shows that
the B-EBL produces models with lower energy than those produced by
the EBL when the two libraries are applied with the same exact number
of conformers. Most importantly, we show that a B-EBL of half the size
achieves equal or better modeling accuracy than the backbone-independent
EBL. The reduction in the number of conformers impacts the computational
efficiency drastically because the search space increases combinatorially with
the number of conformers for each position, therefore this is an important
step forward in performance.

Support for the B-EBL is implemented in the Molecular Software Li-
braries (MSL) v.1.2, a C++ open source library for molecular modeling,
analysis and design.

3.2 Materials and Methods

A dataset of about 2100 high-resolution protein structures with a low
sequence identity was obtained from the Protein Data Bank (PDB) [?] and
minimized using the CHARMM17 program as described in chapter 2. A set
of 480 proteins was selected for full repack tests (described below).
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Backbone-dependent energy-based conformer library (B-EBL)

The backbone-dihedral space was divided into 10◦ x 10◦ partitions, which
has been observed to be the most effective subdivision and a B-EBL was
created for each partition by reordering the EBL from [?]. The subdivision
of the φ/ψ space for each amino acid was done such that each partition
contained a minimum of 100 side chains. All the remaining sparsely popu-
lated partitions were combined into one partition. This was necessary since
the EBL algorithm requires a good number of sample side chains in order
to effectively sample the energy landscape.

The backbone-dependent energy-based library or B-EBL, for each back-
bone partition, was created by reordering the EBL as described in chapter 2.
This process led to the re-sorting of the EBL for each φ/ψ partition and
created a collection of backbone-dependent energy-based conformer libraries
that are better suited for each local backbone geometry. The energy function
used was an implementation of the CHARMM22 [Brooks et al. (1983)] en-
ergy field along with the hydrogen bonding term from the SCWRL [Krivov
et al. (2009)] program. The electrostatic energy term was not used based
on analysis described in chapter 2. All molecular modeling and analysis was
performed using our in-house C++ molecular modeling software library, the
MSL [Kulp et al. (2012)].

Single repacks

Single side chain repack test was performed using the B-EBL and EBL on side
chains from the protein dataset. The side chain atoms from native side chains
in the dataset were removed to create side chain “environment”. Conformers
from the B-EBL and EBL were modeled into each of these environments and
the interaction energy between the side chain and the rest of the protein was
measured for each conformer-environment pair. Conformers were defined to
satisfactorily model or predict a test side chain by an energy-based threshold
described in chapter 2. The number of conformers, in sorted order, together
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required to satisfy the side chains (across all φ/ψ partitions) in the dataset
was measured using both EBL and B-EBL.

Sampling levels

The flexibility in sampling introduced by the EBL enabled the creation of
sampling levels [?] which are a means to balance conformational sampling
across amino acid types. The number of conformers, for each amino acid,
that can together predict a desired fraction of side chains from the dataset
constitutes a sampling level. This definition is extended to include each φ/ψ
partition in the backbone-dependent EBL. Each sampling level specifies the
number of conformers to be used for each residue (in each φ/ψ partition)
such that comparable modeling accuracy is achievable across all residue
types. For example, in the (φ=-60,ψ=-40) partition, eight Leu conformers
constitute the 85% sampling level since they can predict 85% of the Leu
side chains in the dataset. Similarly, several sampling levels are defined for
all amino acids in all the φ/ψ partitions.

Complete repacks or full-protein repacks

Side chain optimization was performed on the set of 480 proteins selected
for this purpose. All side chains except Ala, Pro and Gly were removed and
predicted using both EBL and B-EBL. His residues were predicted according
to the protonation state predicted by Reduce [?]. The repackSideChains
program in MSL [Kulp et al. (2012)] was used for optimization using the
EBL [?]. For optimization using the B-EBL, an ad hoc program was created
which determined the appropriate B-EBL library to be used for each position
based on the backbone dihedral angles, φ and ψ. The B-EBL was restricted
to use the same or lesser number of rotamers than the corresponding EBL.

Side chain optimization was performed using a greedy algorithm that
started with an initial conformation for all positions and optimized one
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position at a time, while all the other residues were held fixed. It simply
scanned all the conformers for each position, and picked the conformation
with the lowest energy. This procedure was repeated for all residues until no
new conformers were picked for any residue. This procedure was repeated ten
times for each protein backbone with different initial rotamer assignments.

Dihedral recovery

To measure the accuracy of modeling, side chain dihedral angles in the
modeled structures were compared with the corresponding native structures
in the test dataset. The getChiRecovery program in MSL [Kulp et al. (2012)]
was used to measure the dihedral recovery. A side chain was considered
recovered if all its side chain dihedral (chi-χ) angles were within 40◦ of the
values in the native structure.

Two tests were performed, a) B-EBL was constrained to use the same
number of conformers as the EBL at different sampling levels and b) B-EBL
and EBL used their respective sampling levels of comparable sizes (number
of conformers), with the B-EBL always smaller than the corresponding EBL.
Side chains in the protein core were determined using a threshold based on
the solvent accessible surface area and results on these “core” side chains
are reported.

3.3 Results and Discussion

Library creation procedure

Other than the fact that the protein environments were subdivided based
on their backbone dihedral angles (φ/ψ), which will be detailed later, the
procedure followed for the creation and testing of the B-EBL is identical to
the original procedure1, as schematically summarized in Figure 2.4. The base
was the same very fine conformer library used for the creation of the EBL,
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which was sorted independently for each φ/ψ partition to produce backbone
dependent libraries. As for the EBL, the conformers were reconstructed
within fixed protein environments that belong to each φ/ψ partition and
interaction energies between the side chain and the protein were measured
(Figure 2.4a). If an interaction energy was below a certain energy threshold,
the environment was deemed to be satisfied by the conformer (green thick
marks in Figure 2.4b). The interaction data was used to sort the conformers
as follows: the conformer that satisfied the most environments was added
to the sorted library, and all the environments that were satisfied by the
conformer were removed and no longer considered in the selection of the
next conformer. This exclusion ensures that a sequence of conformers that
complement each other was selected. However, at every cycle the energy
threshold that determined if an environment is satisfied was increased, and
thus previously removed environments that resulted no longer satisfied at the
new more stringent threshold could be considered again. This mechanism
ensured that the environments could return into play and were not rapidly
consumed by the procedure. As discussed later, the conformer/environment
energy data is also used to create a series of “sampling levels”. The sampling
levels are a tool for truncating the library at a desired level of granularity
while maintaining balanced sampling across amino acid types. The sampling
levels ensure that every amino acid type has a similar chance to fit within
an environment that should in principle accommodate it.

Partitioning the protein backbone space

The major challenge for the creation of a backbone-dependent energy-based
library was the identification of an effective strategy for subdividing the
ramachandran (φ/ψ) space. The subdivision should result in sufficient data
for each partition while at the same time capturing the natural variation
of rotamer propensity across the backbone space. The partitioning may be
secondary structure-based [?], or based on even dihedral angle intervals, for
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example, by dividing the φ/ψ space into 10◦x10◦ bins [Shapovalov and Dun-
brack (2011)]. While the secondary structure-based representation results in
large well populated partitions, the explicit 10◦x10◦ scheme results in a small
number of partitions that contains a sufficient number of environments for
the EBL algorithm. Nevertheless, because the Ramachandran distribution
is highly uneven, with relatively small areas of very high density and large
areas that are very sparsely populated, a 10◦x10◦ partitioning scheme can
still result in a backbone dependent library that covers a large fraction of
the entire population.

To avoid over-fitting the training data during the sorting procedure, we
estimated that each 10◦x10◦ partition should contain a minimum of 100
environments. Therefore all 10◦x10◦ partitions that contained at least 100
examples for each amino acid were collected for the application of EBL.
All the other 10◦x10◦ partitions were clustered into one partition leading
to a number of partitions for each residue that ranged from 27 (Val) to
4 (Cys). The EBL algorithm was applied to each partition thus created
and a backbone-dependent EBL was created. Single repack tests were
performed using the two libraries created. we observed that the explicit
10◦x10◦ partitioning slightly outperformed the secondary-structure based
method. This led us to adopt the 10◦x10◦ partitioning strategy.

An interesting feature of the Energy-Based Library is that its composition
agrees with the overall natural bias of side chain conformation. This is
well illustrated in a side-by-side comparison of the rotamer probability in
the PDB [Shapovalov and Dunbrack (2011)] and the composition of the
EBL (at the 85% sampling level), shown in Figure 3.1a for Leu and in
Figure 3.1d for Ile. This match is not observed in other commonly used
libraries [?]. This characteristic is a consequence of how the library is
constructed. It is also an indication that sampling side chain conformational
space proportional to the population of each rotameric region leads to an
efficient library. However, that rotamer preferences vary drastically with
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Figure 3.1: Significant backbone-dependent variations in rotamer distribution.
(a) The stacked graph shows the overall rotamer distribution for Leu sidechains
in the PDB and the SL85.00 sampling level of EBL (one sampling level shown
for simplicity). The similarity in the stacks shows that the overall distribution is
well captured by the backbone-independent EBL. (b) Five distinct 10◦x10◦ bins,
labeled 1-5, are selected from the backbone dihedral space for Leu and are shown
on a color and gradient-coded density plot. The color is a proportional mix of the
colors for each of the rotamers and the gradient codes for the relative population
in the bin. (c) The rotamer distribution for each of the five regions is shown as
a stacked graph. The (g-,t) rotamer is predominant in regions 2,3 & 5, whereas
the (t,g+) rotamer dominates in region 1 & 4 . Clearly, there is a significant
change in rotamer distribution across the backbone dihedral space. (d,e and f)
The corresponding data for the Ile sidechain also illustrates significant variations
in rotamer distribution.
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local backbone geometry [Shapovalov and Dunbrack (2011); ?] and that
rotamer libraries that capture this variation are more effective in side-chain
sampling [Dunbrack (2002)].

For Leu the most frequent rotamers are [g-,t] (62%) and [t, g+] (30%)
(Figure 3.1a). However, the relative frequency of these two rotamers, as well
as of the other minor rotamers, varies widely across the φ/ψ space. This is
illustrated in a color coded representation in Figure 3.1c, and in detail for
selected 10◦x10◦ bins in the bar graphs of Figure 3.1c. A similar situation
is even more noticeable for Ile (Figure 3.1 d-f). An extreme example is the
rotameric probability of the Ile -130◦/160◦ bin, which is marked as number
5 in Figure 3.1e-f. In this bin, the [g+, t] rotamer, which represents just
10% of the total in the overall backbone-independent distribution, becomes
dominant over 90%.

An analysis of the most dominant leucine rotamers in each region of
the φ/ψ space illustrates the variability in rotamer preferences with small
changes in backbone geometry. On a set of high quality protein structures
from the Protein Data Bank (PDB) the dominant leucine rotamer for each
φ/ψ partition was determined and is shown in Figure 2.4. The dominant
rotamer for the helical region (in Figure 2.4) is the (g-,t) rotamer, shown
in red and for the beta sheet region is the (t,g+) rotamer, shown in blue.
However, even within each secondary structure region, the rotamer preference
(and/or distribution) changes with slight changes to the backbone dihedral
angles. This can be observed by the blue patches in the helical region and
red patches in the beta sheet region of φ/ψ space (Figure 2.4). This analysis
showed that a purely secondary structure based subdivision of φ/ψ space
is probably less informative than an explicit dihedral value-based partition.
The analysis also suggests that a carefully compiled backbone-dependant
EBL for each φ/ψ partition could be dramatically different and probably
more effective than the EBL which does not explicitly consider backbone
dependence.
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B-EBL performs better in single repack tests

The relative efficiency of the library is demonstrated by two experiments.
First, the B-EBL is tested in a series of single side chain repacks where a
single side chain is predicted with all the other side chains held fixed in
their native conformations. The B-EBL is then subjected to the full-protein
repacks, in which all side chains are simultaneously optimized. Performance is
quantified with two metrics, energy and correct prediction of crystallographic
side chains.

A set of side chain “environments” are selected from native protein struc-
tures by removing the side chains and are binned into their corresponding
φ/ψ partition. The conformers from the corresponding B-EBL partition
are used to model the side chains within these environments one at a time
and the cumulative number of environments “satisfied” by the addition
of each conformer is determined using an energy-based threshold. This
experiment is referred to as the “single repack test” and the number of
conformers that can together predict different fractions (60%, 70%, 75%,
80%, 85%, 90%, 92.5%, 95% and 99% ) of the test dataset was measured.
Single repack performance is a good indicator of performance in typical side
chain optimization procedures as we observed in [?].

Results in Figure 3.2 show the single repack performance of B-EBL and
EBL for the leucine and isoleucine side chains. The number of conformers
used is shown along the x-axis and the fraction of all test side chains that
were satisfactorily predicted using these conformers is shown along the y-axis.
For both leucine and isoleucine, the B-EBL satisfies more side chains using
fewer conformers; to model 90% of all leucine side chains, B-EBL required
only its first 29 rotamers whereas EBL required 60 conformers. Similarly,
for isoleucine, the B-EBL required only 12 conformers whereas the EBL
required 28 conformers. This improvement indicated that the B-EBL may
have greater efficiency than EBL in side chain optimization.
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Figure 3.2: BEBL shows improved performance in single repack tests. Side
chains were remodeled in test environments using conformers from the EBL and
BEBL. The fraction of environments satisfied by the first N conformers (1 to 100)
of the library is reported on the y axis. a) BEBL covers more side chains than the
EBL as each conformer is added. 29 BEBL conformers satisfied 90% of Leu side
chains whereas 60 EBL conformers were required. b) 90% of Ile side chains were
satisfied by 12 BEBL conformers whereas 28 EBL conformers were required. The
BEBL requires only half the number of conformers at each position to achieve the
same performance as the EBL.
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Customizable granularity of the side chain library
using “sampling levels”

Each residue type is unique with respect to its geometry and has different
sampling requirements. For example, valine which has a small side chain
requires fewer conformers compared to a larger side chain like arginine;
therefore, it may be useful to employ a different number of conformations
for each amino acid. In the original EBL we used the data from single
repack tests to create a set of “sampling levels” of increased granuarity [?].
At least in principle, these levels balance the number of conformers across
all residue types so that sampling increases homogeneously to provide the
different amino acids with the same chance to be correctly predicted in side
chain optimization. The number of conformers that satisfy the same fraction
of side chains for each amino acid in the single repack test constitutes a
sampling level. For example, the EBL sampling level SL85.00 (covers 85%
of test sidechains) contains 149 arginine conformers and 7 valine conformers.
These sampling levels may be used as guides to balance sampling across
amino acids for given computational constraints.

As in EBL, sampling levels were determined for B-EBL, by computing
the number of conformers required to achieve single repack coverage. For
example, to satisfy 80% of the leucine side chains in the dataset, B-EBL
requires its first 11 conformers (across all bins) whereas EBL required 20
conformers. To achieve 95% coverage, the B-EBL requires only 63 conformers
while EBL required 188 conformers. Figure 3.3 compares the number of
conformers at each sampling level for the EBL and B-EBL and shows that
the B-EBL requires fewer conformers for the same single repack performance
at any desired sampling level. This result suggests that a far smaller B-
EBL might achieve the same performance as a larger EBL in side chain
optimization.
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Figure 3.3: BEBL requires fewer conformers for the same single repack perfor-
mance. The number of EBL and BEBL conformers required to recover a certain
fraction of Leu sidechains was measured (referred to as “sampling levels”). This
figure shows that BEBL requires fewer LEU conformers than EBL at any given
level.

EBL algorithm captures backbone-dependence

In this section we describe a simple experiment that analyzes the rotameric
distribution of leucine conformations in the B-EBL. The first ten conform-
ers from each partition in the B-EBL were extracted and their rotameric
distribution was computed, these distributions were in agreement with the
backbone-dependent rotamer library [Shapovalov and Dunbrack (2011)]
(Figure 3.1). Leucine side chains contain two dihedral angles referred to as
χ1 and χ2. In crystal structures, the values of χ1 and χ2 are observed to
cluster around nine energetic minima corresponding to all the combinations
of χ1 = -60 or gauche-(g-), 180 or trans(t), +60 or gauche+(g+) and χ2=g-,
t, g+, called rotamers. The existence of these rotamers has been attributed
to sterical reasons [Chakrabarti and Pal (2001)]. Of these nine rotamers,
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two are the most frequent 1) χ1= t and χ2 = g+ and 2) χ1= g- and χ2 = t.
However, distribution of these rotamers is dependent on the backbone dihe-
dral angles φ and ψ. For instance, according to [Shapovalov and Dunbrack
(2011)], in the partition (φ = -60, ψ = -50) the (t,g+) rotamer is more
probable than the (g-,t) rotamer whereas in the partition (φ =-60, φ =
-40) the (g-,t) rotamer is more probable than the (t,g+) rotamer. Similarly,
there are regions that are extremely biased towards one of the rotamers like
the partition (φ= -70, φ = -20) which is highly biased towards the (g-,t)
rotamer. Since the backbone and side chain geometries are so interrelated it
becomes necessary to validate that the B-EBL preserves (or captures) these
dependences.

The B-EBL contains 20 partitions for leucine, with the last partition
being a collection of all the sparsely populated 10◦x10◦ regions in φ/ψ
space. Figure 3.1 compares the rotameric distribution of the first ten leucine
sidechains in all the φ/ψ partitions with the probabilities specified by the
backbone-dependent rotamer library [Shapovalov and Dunbrack (2011).
These results show that the ranking produced by the EBL algorithm in each
of the φ/ψ partitions arranges conformers in proportion to the underlying
rotameric distribution specified in the backbone-dependent rotamer library
[?]. This agreement between the two distributions illustrates the efficacy of
the EBL algorithm to correctly represent the backbone-dependent rotameric
distribution. In contrast to the backbone-dependent libraries that present
a statistical view of the side chain dihedral space, the B-EBL specifies
complete side chain conformations that will be most efficient for a side chain
optimization procedure.

B-EBL leads to models with lower energies

Side chain modeling is a search for the lowest energy structure, therefore the
energy obtained is an important parameter in estimating the efficiency of a
modeling protocol. The “complete repack test” refers to the procedure where
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all the side chains in a protein are modeled via a search over the combinatorial
space of conformations specified by a side chain library. Complete repacks
were performed on 480 proteins from the curated dataset using both the
EBL and the B-EBL and the best energies obtained for each protein is
compared as shown in Fig 3.4.

The repacks were performed using the same number of conformers from
the EBL and the B-EBL; the number of conformers used were the “sampling
levels” determined for the EBL. The number of proteins where one library
achieves a better energy than the other is shown in Figure 3.4a). The B-EBL
achieves lower energies for more proteins than the EBL at all sampling levels.
This improved performance is more pronounced in the middle sampling levels
and tapers off towards the extremes. This is because at very high sampling
levels, both the B-EBL and EBL contain enough conformers to represent
the side chain space and the difference in performance is less pronounced.
However, the number of conformers at these levels is so high that they may
not be suitable for the side chain optimization of large proteins. At very low
sampling levels, there are not enough conformers in both EBL and B-EBL to
achieve good side chain optimization. Thus, the B-EBL achieves improved
performance for those sampling levels that are most likely to be used in a
side chain optimization procedure. Panels 3.4b) and c) visualize the results
slightly differently for the SL85 sampling level of EBL. Figure 3.4b) shows
the normalized energies, obtained by subtracting the energy of the crystal
structure from the energy of the repacked structure, as a scatter plot with
EBL energies along the y-axis and B-EBL energies along x-axis. In about
75% of the test proteins, the B-EBL achieves lower energies than the B-EBL
i.e) 363 out of 480 points lie to the left of the diagonal in Figure 3.4b).
Figure 3.4c) is obtained by binning the proteins by their normalized energy
and shows that the B-EBL bins are shifted towards lower energies than EBL.
These experiments demonstrate that when the same number of conformers
are employed B-EBL leads to lower energies than the EBL implying a better
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Figure 3.4: BEBL achieves better energies for the same number of conformers.
Sidechain optimization was performed on a set of 480 test proteins using the
same number of conformers from the EBL and BEBL. This figure shows the
number of proteins where each library achieved better energies than the other.
The BEBL performs significantly better than EBL at levels SL70 through SL90.
At the largest (SL95) and smallest (SL60) levels, BEBL is still better than EBL
but the improvement is less significant. In panel b) is a plot of the energies,
after subtracting the energy of the crystal structure, obtained from sidechain
optimization at SL85 using BEBL and EBL (along the x- and y-axis respectively).
The higher density of sample points to the left of the diagonal shows lower energies
obtained by the BEBL. Panel c) shows the data in b) in 10 kcal bins; it shows
how the BEBL frequently achieves lower energies than the EBL.
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sampling of conformational space.

B-EBL achieves more accurate structure prediction

The accuracy of protein modeling is typically measured in terms of the
number of side chain dihedral angles predicted within 40◦ of the native
structure. In this section, we describe two experiments to compare the
dihedral recovery of B-EBL and EBL, both performed at “sampling levels”
determined earlier. In the first experiment, complete repacks were performed
at the “sampling levels” determined for the EBL and B-EBL. The number
of conformers in the B-EBL is far fewer than EBL at any given “sampling
level” as described earlier in this section, therefore the size of the search
space explored using the two libraries varied significantly. The actual size of
the combinatorial space explored for the EBL and the B-EBL was measured
for each protein and the average size for each sampling level was determined.
Figure 3.7 shows that at any desired sampling level, the B-EBL presents
a far smaller search space compared to the EBL. However, despite this
apparent disadvantage, the B-EBL achieves similar modeling accuracy as
the EBL as shown in Figure 3.5. The average dihedral recovery across all
amino acids in the test dataset of 480 proteins is determined using both
B-EBL and EBL and a comparison at several sampling levels is shown in
Figure 3.5. The fact that the average dihedral recovery for the EBL and
B-EBL does not differ by more than two percent demonstrates that the
B-EBL achieves similar modeling accuracy as EBL at a lower computational
cost i.e) by using fewer conformers.

The second experiment compares the dihedral recovery of EBL and B-
EBL of comparable sizes; B-EBL sampling levels were selected such that the
search space was as close as possible but never larger than that of the EBL
sampling level being compared. Complete repacks were performed at the
selected sampling levels and the average dihedral recovery was determined
as before. Figure 3.6 compares the average dihedral recovery of EBL and
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Figure 3.5: BEBL achieves comparable dihedral recovery with fewer conformers.
Sidechain optimization was performed over 480 proteins in the test dataset using
both EBL and BEBL at the same levels, and the dihedral recovery was measured
over all amino acid types. The BEBL libraries were considerably smaller in size
compared to the EBL(see Figure 3.7), in spite of this disadvantage, BEBL dihedral
recovery was comparable to the EBL at all the measured “levels”.

B-EBL of comparable sizes (L1 < L2 < L3 < L4). It can be seen that
B-EBL performs exceedingly well at low sampling levels and the difference
is not as pronounced at the higher sampling levels (with B-EBL always
performing better). This result makes a strong case for the use of B-EBL
when application requirements mandate a quick repack procedure that does
not compromise too much on modeling accuracy.

3.4 Conclusions

We have presented a backbone-dependent energy-based conformer library (B-
EBL) that improves protein side chain modeling. Our experiments show that
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Figure 3.6: Improved dihedral recovery with BEBL of comparable size. Sidechain
optimization was performed on 480 proteins in the test dataset using both EBL
and BEBL of approximately the same size (the BEBL was always smaller in size),
and the dihedral recovery was measured across all amino acid types. The figure
shows how BEBL libraries performed considerably better than the EBL at all the
measured “levels”.

the EBL algorithm can be successfully applied in the creation of an energy-
based conformer library that exploits the backbone-dependence of side chain
conformation. The B-EBL was compared against a backbone-independent
energy-based library (EBL) which has been shown to perform better than
state-of-the-art conformer libraries in [?]. The B-EBL outperforms EBL in
terms of both the energies achieved through side chain optimization as well
as modeling accuracy measured by dihedral recovery. B-EBL exploits the
backbone-dependence of side chain conformation to improve performance
while at the same time retaining the flexibility of the EBL. we have experi-
mentally demonstrated that the B-EBL requires fewer conformers to achieve
the same performance as the EBL and achieves better performance for the
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Figure 3.7: The combinatorial size of the search spaces produced by the EBL
and BEBL under comparison are shown in this figure. At all the defined sampling
levels, BEBL presents a much smaller search space compared to the EBL. Inspite
of this apparent disadvantage, the BEBL achieves better dihedral recovery than
the EBL as shown in Figure 3.6.

same number of conformers. The reduction of computational overhead, via
the reduction in number of conformers. will benefit several protein modeling
applications where side chain modeling is the bottleneck. On the other hand,
improved accuracy for the same library size will help applications achieve
better modeling without sacrificing computational efficiency.
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Summary

Side chain optimization is the process of packing the sidechains of a pro-
tein onto a fixed backbone structure, such that the energy of the resultant
structure is minimized. The continuous space of sidechain conformations
is typically handled by discretizing (sampling) into a finite set of repre-
sentative conformations called a "conformer library". In this chapter we
use machine learning methods to allocate conformational sampling on a
position-dependent basis. Different positions in a protein backbone have
different sampling requirements, for example, solvent exposed positions re-
quire less sampling than positions in the core of a protein. Machine learning
algorithms are used to identify the sampling requirements of each position
in a target protein backbone based on a quantitative representation of its
environment. A 3-ary categorization of every position in a target protein
backbone is performed using several machine learning algorithms and the
classification produced is evaluated in actual side chain optimization per-
formed on high-resolution protein structures. Results demonstrate that in
comparison with an unbiased distribution of conformational sampling, this
position-dependent sampling helps to distribute sampling more efficiently
for sidechain optimization. These techniques help achieve better prediction
accuracy using fewer conformers, thereby reducing the computational cost
of side chain optimization.

4.1 Position-dependent conformer sampling

In chapter 3, we have detailed strategies to determine how sampling should
be prioritized to produce the most effective conformer libraries for sidechain
optimization. While this library of top ranking conformers is a great resource,
an exhaustive search over a large number of conformers for every position can
be prohibitively expensive. It would be appropriate to consider a different
search space for each position based on its structural properties. Since the
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environment around each position in a protein varies widely, the sampling
requirements of each position is also variable. For example, different positions
in a protein may be surrounded by amino acids with different degrees of
mobility and by immobile backbone atoms. Some positions may be exposed
to the outside of the protein and have very loose constraints imposed by
the environment. While it is clear that the level of sampling required
to fit a sidechain in a different position depends on the tridimensional
constraints of the environment, an exact relationship is difficult to identify
given the extreme complexity of the problem. The question that we address
in this chapter is the following: How do we identify the set of sidechain
conformations that will maximize performance in sidechain optimization?

The problem is ideally suited for a Machine Learning (ML) approach and
in this work, we present a method that analyzes the structural characteristics
of each specific sidechain optimization problem and produces customized
libraries that best suit the exact needs of each position in the problem.
We take the following approach to this problem: in the first-step, we label
each position based on the “ease of fit” for a set of proteins whose crystal
structures are extracted from the Protein Data Bank (PDB) [?]. In the
second step, a classification algorithm is trained to predict the label for each
position based on environmental features that can be easily obtained for
unseen proteins in the target set. The classification allows us to drastically
reduce the search space through the sorted conformer library. As far as we
are aware, this is the first attempt at using machine learning for directly
addressing the preprocessing step of sidechain optimization - i.e., to improve
the search space over which the underlying sidechain optimization algorithm
would operate.

This chapter is based on [?] and describes several key contributions: First,
it considers the extremely hard problem of distributing sampling among
different positions in a protein. To our knowledge, there is no method that
attempts to differentiate between positions of the same amino acid type i.e.,
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search a different set of conformers for each position. Second, the proposed
two-stage approach effectively exploits the training set energies and learns
a classifier that can be generalized to an unseen protein. This proposed
approach is directly based on the objective function of the optimization
(energy) and uses structural features that allow for generalization. Third,
evaluation on 44 proteins shows that the ML-based approach can yield a
better search space compared to the baseline method with similar memory
and runtime constraints.

Conformer Library

The experiments in this chapter are based on the energy-based conformer
library we created in our previous work [?] : a library that distributes
sampling based on the energetic impact of sidechain conformation instead
of pure geometry. The energy-based library is a ranked list of conformers
for each amino acid type where the first n conformers is probably the best
set of ‘n’ conformers.

4.2 Machine Learning to Distribute
Conformer Sampling

Formally, this problem can be posed as follows: Given a set of backbones B,
where each bi ∈ B corresponds to the backbone of protein i and a (possibly
infinite) set of conformers C, the goal is to identify a smaller subset of
conformers to be evaluated at each position rji for bi such that the energy
ei of protein i is minimized. We denote sets using capitalized letters and
individual items using small letters. The conformer library that we have
created is a great resource to fit a conformer in each position. It provides
a sorted list of conformers for each amino acid. The size of the conformer
library (let us denote this as Cl) is significantly smaller than C. Even with
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Cl, the challenge is to bound the search space i.e., determine the number of
conformers to be evaluated at every position.

The typical strategy is to use the same number (say n) of conformers at
each position. If there aremi residues for the current backbone bi, this leads
to a search space of nmi . This could be a sub-optimal solution because:

1. Some positions can be very flexible, a search over a smaller number of
conformers (< n) would suffice at such positions.

2. Some positions can be very “hard" to fit and would require a search
over possibly a very large number of conformers (> n).

In the first case, this method would yield an unnecessarily large search space
while in the second case due to the restricted search space, the energy of the
protein may not be sufficiently minimized. Thus, in most cases, we require
a different number of conformers to be evaluated at every position.

Since determining a different number of conformers for every position
is an extremely hard problem, we propose to classify the positions rji into
a small number of categories (say Y) based on the ease of conformer fit.
To this effect, we employ a machine learning approach that we present
in detail in this chapter. For this problem, the dataset consists of the
proteins bi, i = 1..n with their crystal structures and corresponding energies
ei, i = 1..n and the sorted list Cl. The goal is to learn to predict the number
of conformers that need to be searched in a new protein in order to achieve
its minimal energy state.

Labeling

Given this data, the goal is to categorize every position rji in the backbone
of each protein based on the fit of the conformers. We adopt the following
strategy to obtain a label (yji) for each position rji. We score each rji of
each bi in the training set based on the fit of the conformers in Cl. More
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precisely, we traverse the sorted list and for each position, find the number
of conformers that result in a “good” energy of interaction for the sidechain
with the rest of the protein. An important thing to note is that all the other
positions rj

′

i , j ′ 6= j are held in their natural state i.e., they all retain their
crystal structure). The score sji of rji is then the number of conformers that
are a good fit for the position.

Every position with a high score can be fit by a large number of con-
formers, therefore, it is easy to find a conformer in the library that fits
this position and so it will be labeled as “easy” . A position with a low
score, on the other hand, will be labeled as “hard”. More precisely, we
label the top and bottom 25 percentile of positions (based on the score)
as “easy” and “hard” respectively, and all positions in between are labeled
“unclassified” indicating that we cannot label them as “easy” or “hard” with
high confidence . Thus the set Y consists of the elements easy, unclassified
and hard.

Hence, in the first step, we label the different residues (rji’s) in the
backbone of the training set proteins based on their score (sji) into different
categories (denoted by the set Y). The number of conformers (nk) required
for each of these categories (yk) is obtained from the energyTable described
in section 2.3. The “easy” positions are assigned numbers from a lower
optimization level than the “hard” positions.

Given a new protein backbone, it is computationally expensive to cate-
gorize each position of the backbone with the above strategy. This is due to
the fact that such a labeling step requires traversing through each position
and manually evaluating the fit of every conformer in the library. It is also
worth noting that the above strategy requires the sidechain atoms of other
positions to be present when a conformer is evaluated at a position. So, in
this work, we propose using a machine learning algorithm to predict the
category of each position and then using these labels to assign the level
of sampling for each position. Such a prediction algorithm would make it
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possible to pre-define the number of conformers to be evaluated at each
position taking into account the sampling requirements for that position.

Classification

One of the main advantages of machine learning methods is the ability to
learn a model from a training set and predict on a target set that consists
of the same set of features. In the labeling step, we computed and used the
score at each position to label positions in the training set. As noted earlier,
obtaining this score on an unseen protein backbone is computationally
expensive. Hence, we use a set of structural features that can be obtained
easily from the backbone for this step.

We now modify the training set to contain the label yji for each position
rji of each backbone bi and a set of chosen geometric and positional features
(Fji) for each rji. Recall that the labels are the manual labels created in the
previous step. The features include: (a) the backbone dihedral angles (φ
and ψ) for 4 positions before and after the current rji in bi, 16 in total (b)
local sequence information (i.e., the residues for 4 positions before and after
rji), 9 features (c) the number of backbone atoms not in the local sequence
and are within 〈4, 8, 12, 16〉 Å of rji, and (d) solvent accessible surface area
for rji. Hence, we use a total of 30 local environment features. We believe
that the local environment is a reasonably good indicator of the label for
every rji. This modified data set is then used for the second step where we
learn a model to predict the category of each residue (position) for a given
backbone.

Now the goal is to learn a function f(Fji) = y
j
i that predicts the “hardness"

of rji based on its features Fji. Please note that these features can be easily
computed for an unseen protein as well, thus justifying their use. Hence,
the learned model can easily be generalized to an unseen protein backbone.
We demonstrate this empirically in the next section. We employ different
learning algorithms ranging from Naive Bayes [?] to decision trees [?] to
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ensemble methods such as bagging [?] and boosting [?] in our experiments.
The goal of this work is not to particularly recommend a single classification
method, but to explore the use of machine learning for this challenging
problem.

Algorithm for sidechain optimization

The result of the classification step is a label that predicts the “hardness" of a
position. Given the hardness level, we use a preset number of conformers to
fit at each position. In this subsection, we present the algorithm that actually
searches through the given set of conformers to identify the conformer that
results in minimum energy i.e., the actual sidechain optimization algorithm.

The program used to perform sidechain optimization implements dead-
end elimination [?], self-consistent mean field [?] and metropolis monte
carlo methods [?] to search the space of conformations defined by the the
conformer library. The algorithm begins by rejecting conformers according
to the dead end elimination theorem. Then, it estimates the size of the
search space, if this size is smaller than a configurable threshold, it performs
an exhaustive search. If the search space is larger, self-consistent mean
field(SCMF) and monte carlo methods are used to search for the minimum
energy configuration. The monte carlo method is biased using the state
obtained by the SCMF method, i.e., the starting state for the monte carlo
method is the most probable state obtained by the SCMF method.

Algorithm for distributing sampling The different steps involved in
our algorithm are presented visually in Figure 4.1. As can be seen, our
first-step is to use the protein database that consists of the backbones bi
and their corresponding energies ei ∀i. Then using the conformer library
Cl, we compute the scores sji for each rji and create a new training database
with rji and sji ∀i, j. Then, we assign a label yji for each rji that is a measure
of its “hardness". In the next step, we create a new database that consists
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Figure 4.1: Schematic representation of the biased sampling strategy.
Each environment in a training database is labeled with one of three labels
{Easy,Medium,Hard} depending on its sampling requirements. A machine learning
algorithm is employed to learn a model that can effectively classify a previously un-
seen environment. Given a target backbone, this algorithm classifies each position
and allocates conformational sampling according to the label.

of the labels yji and the features Fji for each rji. We then learn a classifier
M that learns the mapping f(Fji) = yji ∀i, j. This model M is then used
on the unseen protein database to label each residue of each protein based
on the hardness. Then the sidechain optimization algorithm presented in
Section 4.2 is used to identify the conformer that leads to the minimum
energy for the current protein.

The algorithm has several advantages: First, we address the previously
unaddressed problem of reducing the search space while achieving minimum
energies for the residues using a machine learning approach. This is a
very important contribution as we are the first to explore the possibility of
assigning different conformer sampling to the different positions on proteins
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using their structural features. Second, it makes use of the conformer library
more effectively than choosing a random number of conformers to test on each
residue. This could reduce the search space over the conformer set drastically
or help explore lower energies than before at a similar computational cost.
Finally, our algorithm is independent of the underlying machine learning
techniques. Any existing algorithm can be used for the supervised learning
task and the sidechain optimization step, to improve performance.

4.3 Empirical Evaluation

In this section, we present the results of our experiments on a dataset
that consists of approximately 720 proteins. We selected a small subset as
the test set containing around 44 proteins and compared several different
supervised learning algorithms. The crystal structures of all proteins in the
database were derived from the Protein Data Bank(PDB). The proteins
were modeled using MSL [Kulp et al. (2012)], which is an open source C++
library for analysis, manipulation, modeling and design of macromolecules.
MSL implements all the energy terms in the CHARMM [Brooks et al. (1983)]
potential along with the hydrogen bonding term implemented in the SCWRL
[Krivov et al. (2009)] program. We include the following energy terms a)
bonded energy terms - bond, angle, dihedral and improper b) non-bonded
energy terms - Van der Waals’ interaction, hydrogen bonding. We select all
the positions in these 720 proteins except PRO, ALA and GLY resulting in
a total of around 140000 positions. Each position is then scored as described
in subsection 4.3. Classification is then performed on this dataset for each
amino acid separately. To achieve this, we use the WEKA [?] package.

The goal of this empirical evaluation is to answer the following questions:

1. Does the labeling scheme really help achieve the goals of reduced
search spaces and/or improved energies?
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2. How do the classification methods compare against a baseline method
that does not differentiate between the different positions (but uses a
search space of similar size)?

3. Do the structural features used really have predictive value ?

4. How do different classifiers compare against each other?

The overall goal is to answer the following question: How can we explore lower
energies while minimizing the computational cost by a biased distribution
of conformer sampling? Since, as far as we are aware, there do not seem to
be any existing approaches to exactly answer this question, we attempt to
provide some insights by analyzing our strategy and answering questions 1
through 4 experimentally.

Labeling Experiments

To answer Q1, we performed the following experiments. The first experiment
is to demonstrate that positions that were labeled as “easy" indeed require
low sampling. To verify this, we repack the test set proteins using the
actual labels. We optimize the test proteins with an unbiased sampling ie.,
assigning the same number of conformers to all positions with the same
amino acid, irrespective of their labels, lets call this scheme 1. We then
optimize the same protein with a different sampling for the easy positions
alone i.e., all non-easy positions are assigned the same sampling as scheme 1
and all easy positions are assigned a lower level of sampling, lets call this
call scheme 2. The energies obtained for each protein using the two schemes
are then analyzed.

Figure 4.2 shows the energies obtained using schemes 1 and 2 described
above, for all of the test set proteins. If our labeling scheme was precise,
we would expect all the energies to lie on the diagonal. In fact almost all
the points in Figure 4.2 lie very close to the diagonal indicating very high
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Figure 4.2: The energies obtained using Scheme 1 (unbiased sampling) and
Scheme 2 (low sampling at easy positions) are plotted after subtracting the energy
of the corresponding crystal structure. In a majority of cases only a small increase
in energy is observed at lower sampling - i.e., most points lie close to the diagonal.

precision of the labeling process. Considering the fact that the search space
of scheme 2 is a strict subset(much smaller) of scheme 1, it is interesting
to see that in 3 proteins, scheme 2 produced slightly better energies than
scheme 1. This can be explained by the approximate/probabilistic nature
of the underlying sidechain optimization algorithms (SCMF and MC). In
only 2 (5%) proteins, scheme 1 clearly outperforms scheme 2. This shows
that in most cases we are able to achieve good energies at a much lesser
computational cost by reducing the sampling for positions that are labeled
as easy.
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Figure 4.3: The energies obtained using Scheme 1 (unbiased sampling) and
Scheme 3 (high sampling at hard positions) after subtracting the crystal energy
are plotted. In all the cases, Scheme 3 achieves lower energies.

The above experiment measured the precision of the labeling process
on the easy positions. Next, we analyze the same on hard positions. We
carry out a similar experiment as the one presented above but with the hard
positions, and let us denote this as scheme 3. In this case the search space
of Scheme 3 is much bigger than that of Scheme 1 and we expect better
energies at a higher computational cost. In Figure 4.3 we see that all the
points lie to the left of the diagonal, indicating lower energies in scheme 3,
as expected.

Ideally, the advantages of both the methods must be obtained, i.e., it
should be possible to achieve lower energy configurations at reasonable
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Figure 4.4: The energies obtained using Scheme 4 (unbiased sampling) and
Scheme 5 (lower sampling at easy positions and higher sampling at hard positions)
after subtracting the crystal energy are plotted. Scheme 5 achieves lower energies
in 95% of the cases.

computational costs. To understand whether this is possible, we perform the
following experiment. We assign a low level of sampling to the easy positions
and high level of sampling to the hard positions. We then choose a level of
sampling for the unclassified positions such that the difference in the search
spaces for the biased sampling and the unbiased sampling scheme is minimal
1, lets call the unbiased sampling scheme 4 and the biased sampling scheme
5. In Figure 4.4 we see that scheme 5 achieves better energies in almost all

1In 31 proteins, the difference in log size of the two search spaces was under 2. And
in 27 of these proteins scheme 5 had significantly better energies.
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the cases, thus justifying the labeling process. This clearly demonstrates
that a biased sampling that explicitly distinguishes between the easy and
hard cases achieves better energies while being computationally reasonable.

Thus, our results answer Q1 affirmatively. However, as mentioned earlier,
it will be computationally expensive to perform the labeling process every
time a new sidechain optimization problem is presented. Therefore, if we
can train a classifier to predict these labels as accurately as possible we can
use this biased sampling strategy on new problems efficiently. The following
section presents our experiments with the classifiers available in WEKA.

Classification Experiments

Recall that the features used in the classification step are different from the
one (score) used in the labeling step. This is due to the fact that computing
the score for each position in a backbone can be computationally expensive.
Hence, in the following set of experiments, we used the 30 environmental
features presented in section 4.2 and the labels generated in the previous
step for training. During evaluation, we use the same set of features to
predict on the 44 test set proteins.

We use the following classification algorithms from the WEKA package:
a) Bagging [?] b) simpleCART [?] - decision tree learner c) LogitBoost [?]
- Boosting of decision stumps and d) Naive Bayes [?]. In effect, we learn
a model using each of these methods to predict the label for each position
in each protein. Once the model is learned, we predict the labels at each
position of the test-set proteins.

Once the label for each position is identified, the number of conformers
is chosen from the levels described in chapter 2. The number of conformers
chosen for the hard and easy positions of each amino acid are presented
in Table 4.1. These numbers correspond to the 87.5%-level and 98%-level
as described in chapter 2. The number of conformers for the “unclassified”
positions is computed for each protein as described for scheme 4 in Section 4.3,
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Amino Acid Hard Easy
ARG 224 20
ASN 20 4
ASP 22 4
CYS 169 8
GLN 48 7
GLU 53 7
HSD 57 9
HSE 44 8
HSP 132 37
ILE 15 5
LEU 27 3
LYS 54 6
MET 76 20
PHE 78 16
SER 3 2
THR 6 2
TRP 284 58
TYR 176 40
VAL 5 3

Table 4.1: Number of conformers chosen for the hard and easy positions.

let us call this scheme the baseline for all future experiments. Then, sidechain
optimization was performed on the test set proteins by the program described
in Section 4.2. Finally, we analyzed the energies achieved by sidechain
optimization on the test set proteins.

Figure 4.5 presents the results of the comparison of the models against
the baseline method which uses an unbiased sampling for all positions. For
each of the classification methods, We compare the energies produced on the
classified and baseline models. We compute the fraction of proteins in which
the energy for one method is significantly (> 2 kcal.mol−1) lower than the
other. The figure presents the results for all the classifier methods listed
above. As can be seen, the use of the classification methods yields a superior
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Figure 4.5: Performance of different classification methods against the baseline.
The classifiers achieve significantly lower energies than the baseline in around
60% of the proteins, whereas the baseline achieves lower energies in around 30%
of the proteins only. In the remaining proteins, the difference in energies was not
significant (< 2 kcal.mol−1).

performance for a larger fraction of proteins compared to the baseline which
uses a search space of similar size but without explicitly distinguishing each
position. The performance seems to be comparable for Bagging, CART
and NaiveBayes with LogitBoost performing slightly less efficiently. Hence,
we can answer Q2 positively i.e., all the classifiers perform better than a
baseline that is unbiased.

The results show that using the labels produced by the classifiers im-
proves performance in most cases. We want to verify that this performance
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improvement is not easy to achieve and that the classifiers are indeed making
statistically informed decisions. In order to do this, we test the performance
of a random process that labels 25% of positions as easy, another 25%
as hard and the remaining as “unclassified”, uniformly at random (this is
the proportion of easy, hard and unclassified positions in the dataset as
explained in Section 4.2). So we compare the performance of 4 instances of
such a random process against the baseline. Figure 4.6 shows the results
for these random classifiers. Random processes which do not consider the
structural features perform considerably worse compared to the unbiased
baseline method. Therefore, we may conclude that the classifiers based on
structural features do indeed learn useful information that helps discriminate
between the different kinds of positions and we conclude that Q3 in Section
4.3 has been answered affirmatively.

In order to compare the performance of the classifiers against each other
(and answer Q4), we rank the different classification methods for each protein
based on the resulting energies. The method that has the minimum energy
is ranked first while the one with maximum energy is ranked last for that
protein. We compute the inverse reciprocal rank (IRR) for all the methods
for all the proteins. If the rank of the current method Mj for a protein i is
ri, IRR can be calculated as:

IRR(Mj) =
1
n

n∑
i=1

1
ri

(4.1)

where n is the number of proteins in the test set (= 44). Hence an
IRR of 1 would imply that the method has been ranked as first for all the
proteins, while an IRR of 0.5 may mean it was ranked second consistently
etc. Figure 4.7 presents the IRR for all the methods.

Bagging seems to be the most efficient classifier with the highest IRR.
CART and Naive Bayes have a comparable IRR followed by logitBoost which
has the lowest IRR. However, the experiments were performed with default
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Figure 4.6: Performance of Random labeling against the baseline. In all of the
experiments, random labeling produces higher energies than the baseline method
in about 60-70% of the proteins. Clearly random labeling performs significantly
poorer than the baseline method which is in turn poorer than the biased sampling
method.

parameters for all the classification methods, it may be the case that tuning
the parameters could dramatically change the IRR data presented above.
Since our goal is not to suggest any particular method, but to evaluate the
effectiveness of a machine learning method for this task in general, we do
not tune the parameters to maximize the performance of the classifiers.
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Figure 4.7: Comparison of different classification methods against each other us-
ing the IRR metric. Bagging performs the best, followed by CART and NaiveBayes
and LogitBoost has the worst performance.

4.4 Conclusion

In this chapter, we addressed the challenging problem of distributing sam-
pling among different positions in a protein. To achieve this, we developed
a two-stage approach that used an underlying conformer library. In the
first-step, we labeled the positions based on the number of conformers in the
library that can fit in the position. In the second step, we used a different
set of features (i.e., structural features) to learn a classifier that is able to
predict the hardness of the different positions. We evaluated the two-stage
approach on 44 proteins from the protein data bank. Our evaluation allowed
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us to answer affirmatively a variety of questions ranging from the validity of
the labeling strategy to the effectiveness of the environmental features to
the performance of various classification algorithms. Our results strongly
demonstrate that the use of machine learning indeed results in superior
performance compared to a method that does not explicitly differentiate the
positions.

As far as we are aware, this is the first attempt at the use of Machine
Learning for the problem of distributing sampling across positions. It should
be pointed out that we are exploring the use of Machine Learning for this
task and do not necessarily recommend a particular method. We did not
perform much parameter tuning in our experiments and used the default
settings in WEKA. Moreover, our current approach (being a first-step in
this direction) considers only a 3-ary classification. It must be possible to
define the ease-of-fit at a finer granularity. Hence, it would be interesting to
explore the use of more classification levels and understand its impact on
the overall energy. Still, our results clearly show that we are able to achieve
significantly lower energies while exploring a search space of similar size
and/or achieve good energies with a smaller search space, thereby reducing
the computational cost of sidechain optimization. While the cost of sidechain
optimization may not be a limiting factor in many modeling procedures,
improved performance is likely to open the doors to very computationally
intensive applications. For example, improved performance becomes critical
when sidechain optimization is performed iteratively during numerous rounds
of backbone sampling, or when solvent molecules are modeled explicitly
during side chain optimization.
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5 prediction driven by experimental data:
structural analysis of ftsb

based on

LaPointe LM, Taylor KC, Subramaniam S, Khadria A, Rayment I and
Senes A “Structural organization of FtsB, a transmembrane protein of the
bacterial divisome”, Biochemistry 2013 52, 2574-85

My contribution to this work is the computational modeling of the
interacting transmembrane (TM) domains and the flexible linker region
between the TM and the periplasmic coiled coil.
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Summary

This work is part of the first structural analysis of an integral membrane
protein of the bacterial divisome, a set of proteins that bring about cell
division. FtsB is a single-pass membrane protein with a periplasmic coiled
coil. Its heterologous association with its partner FtsL represents an essen-
tial event for the recruitment of the late components to the division site.
Using a combination of mutagenesis, computational modeling, and X-ray
crystallography, it was determined that FtsB self-associates, and further
investigation revealed its structural organization. It is determined that the
transmembrane domain of FtsB homo-oligomerized through an evolutionar-
ily conserved interaction interface where a polar residue (Gln 16) plays a
critical role through the formation of an interhelical hydrogen bond. The
crystal structure of the periplasmic domain, solved as a fusion with Gp7,
shows that 30 juxta-membrane amino acids of FtsB form a canonical coiled
coil. The presence of conserved Gly residue in the linker region suggests that
flexibility between the transmembrane and coiled coil domains is functionally
important. We hypothesize that the transmembrane helices of FtsB form a
stable dimeric core for its association with FtsL into a higher-order oligomer
and that FtsL is required to stabilize the periplasmic omain of FtsB, leading
to the formation of a complex that is competent for binding to FtsQ, and
to their consequent recruitment to the divisome. The study provides an
experimentally validated structural model and identifies point mutations
that disrupt association, thereby establishing important groundwork for the
functional characterization of FtsB in vivo. This chapter is based on [?] and
discusses my contribution in this work for the molecular modeling of the
FtsB dimer.
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5.1 Introduction

Cell division is one of the most fundamental processes in the life of bacteria.
In gram-negative bacteria, division requires a complex and coordinated
remodeling of the three-layer cell envelope, and therefore mechanisms must
exist to sort the duplicated chromosome, to provide constrictive force, to
synthesize the septal cell wall, and, finally, to induce membrane fusion. These
events are enabled by a multiprotein complex called the divisome. The
assembly of the divisome begins with the formation of a ring-like structure
at the site of division (the Z-ring), where the polymeric FtsZ likely provides
constrictive force and forms a scaffold for the recruitment of the complex
[???]. In Escherichia coli the recruitment of the essential proteins follows a
strikingly linear hierarchy, illustrated in Figure 1a [?]. The cytoplasmic side
of the ring is formed by the early components: FtsA, a membrane-associated
actin family member that forms protofilaments [??]; ZipA, a single-pass
membrane protein that contributes to FtsZ tethering along with FtsA [??];
and FtsK, a DNA translocase that is essential for unlinking chromosome
dimers after homologous recombination [?]. In contrast, the late proteins
perform functions related to the reconstruction of the cell-wall: FtsW is a
transporter of cell wall precursors across the membrane[??]; FtsI is important
for the cross-linking of the cell wall during division;[?] and FtsN is necessary
for the recruitment of nonessential septal components, the murein hydrolase
AmiC, [??] and the Tol-Pal complex required for proper invagination during
constriction [?].

The early and late components of the divisome are linked by a trio of
single pass transmembrane (TM) proteins: FtsQ, FtsB, and FtsL. The ability
of FtsB and FtsL to recruit the late divisome elements suggests that they
have a structural role as a scaffold in the assembly of the divisome [?], and
it has been proposed that they are involved in Z-ring stabilization [?]. FtsB
and FtsL may also be involved in a regulatory checkpoint of division because
the depletion of FtsB from E. coli cells results in the disappearance of FtsL
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Figure 5.1: The recruitment hierarchy of the divisome and the predicted topology
of FtsB and FtsL. (a) In E. coli the recruitment of the divisome to the division
site follows a strict hierarchical dependency [?]. A functional FtsZ is required for
the recruitment of FtsA and ZipA, which in turn are required for the recruitment
of FtsK, and so on. FtsB and FtsL are codependent for their recruitment and
both depend on FtsQ. (b) Putative domain topology of FtsB and FtsL, as anno-
tated in UniProt. Their interaction is presumed to be mediated by their single
transmembrane domain (TM) and a juxta-membrane coiled coil region (CC). The
start and end positions of the predicted TM and CC domains are indicated. Cyt.
= cytoplasm. I.M. = inner membrane. Peri. = periplasm.

[?]. The cellular instability of FtsL was also observed in Bacillus subtilis
[???], where FtsLB is rapidly degraded by the intramembrane protease RasP
unless it is stabilized by its interaction with the FtsB homologue (DivIC) [?].
These observations led to an unconfirmed hypothesis that active proteolysis
of FtsL may be a regulatory factor in the timing of bacterial cell division [?].

While the precise function of FtsB and FtsL is not well understood,
substantial evidence indicates that they physically interact with each other.
As highlighted in Figure 1a, FtsB and FtsL are mutually dependent for
their recruitment at the division site, and both proteins depend on the
localization of FtsQ [??]. A similar picture has been reported in B. subtilis,
where the localization of the homologues of FtsLB and DivIC depends on the
FtsQ homologue (DivIB) at the temperature at which DivIB is essential[??].
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There is strong evidence that FtsB and FtsL form a stable subcomplex
in vivo. A complex comprising FtsB, FtsL, and FtsQ was isolated from
E. coli by coimmunoprecipitation [?]. The physical interaction of the E.
coli and B. subtilis proteins was also confirmed by two-hybrid analysis
[???]. Further evidence of a stable interaction between FtsB and FtsL was
obtained with a series of artificial septal targeting experiments [??????]
that demonstrated that FtsL and FtsB interact with each other and can
recruit the downstream proteins even when FtsQ has been depleted from
the cell [?]. Moreover, the B. subtilis homologues FtsLB and DivIC form a
complex when coexpressed in E. coli despite the fact that they are unlikely
to interact with the significantly divergent E. coli division proteins [?].

The domain organization of FtsB and FtsL (Figure 1b) suggests that
they may interact through an extended helical structure encompassing the
membrane and periplasmic regions. Both proteins contain a TM domain and
a juxta-membrane coiled coil, in addition to a small (FtsL) or minimimal
(FtsB) cytoplasimic N-terminal tail. The TM and coiled coil regions of
FtsB are necessary and sufficient for its interaction with FtsL [?] and
similarly, the TM and coiled coil regions of FtsL are both essential for its
interaction with FtsB [?]. A low resolution model of the soluble domains
of the Streptococcus pneumoniae homologues of FtsB, FtsL, and FtsQ was
proposed by Masson et al.,[?] based on a combination of NMR, small angle
neutron, and X-ray scattering, and surface plasmon resonance. In this
study the TM domains were truncated and replaced by a soluble coiled coil
pair [??]. More recently, a bioinformatic analysis of the soluble domains
of FtsB, FtsL, and FtsQ suggested two alternative models with 1:1:1 or
2:2:2 oligomeric stoichiometries [?]. However, no structural information was
available regarding the organization of the important TM region.

In an effort toward understanding the structural organization and precise
oligomeric state of the FtsB-FtsL complex, the self-association propensities of
both TM and soluble regions of the two individual proteins were investigated.
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We hypothesized if the FtsB-FtsL complex is larger than a dimer, one or
both proteins could potentially self-associate and be studied in isolation.
Indeed, it was experimentally determined that FtsB homo-oligomerizes using
the TOXCAT assay [?]. Here we present a structural analysis obtained with
a combination of extensive mutagenesis, computational modeling, and X-ray
crystallography. The results provide a theoretical scaffold for the biophysical
characterization of the FtsB-FtsL heterologous complex and offer several
structure-based hypotheses that can be tested in the context of cell division
by functional studies in vivo. This chapter describes the computational
modeling (details of the mutagenesis and crystallography are presented in
[?]).

The following hypotheses and experimental results were available as
inputs to the computational modeling process:

1. The TOXCAT assay [?] confirmed that the transmembrane domain
of FtsB self-associates [?].

2. Mutagenesis data for each position in the transmembrane region and
its impact on dimerization was available.

3. Sequence analysis of related protein sequences (across variaous bacte-
riae) led to the hypothesis that a critical polar amino acid (Gln 16)
mediates the self-association of the FtsB trasmembrane domain.

The FtsB transmembrane dimer was modeled computationally using the
above inputs as described in Section 5.3. The generated TM model was
then stitched to the crystal structure of the coiled coil region as described
in Section 5.3 to complete the FtsB model.
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5.2 Results and Discussion

TOXCAT reveals self-associating FtsB TM domain

The self-association of the TM domains of FtsB and FtsL from E. coli was
analyzed using TOXCAT, a widely used biological assay for TM association
[?]. The assay is based on a chimeric construct in which the TM domain of
interest is fused to the ToxR transcriptional activator domain from Vibrio
cholera (Figure 5.2a). Oligomerization, driven by the TM helices, results in
the expression of the reporter gene chloramphenicol acetyltransferase (CAT).
The expression level of CAT (measured enzymatically) is compared to that
of a stable dimer, glycophorin A (GpA), as a standard. While TOXCAT is
applicable to membrane proteins of any origin (GpA for example is a human
protein), it is significant that in the case of FtsB and FtsL the analysis is
performed in their native E. coli membrane. This fact also raised an initial
concern that the TOXCAT constructs could potentially interfere with the
cell division process. Fortunately, this concern was unfounded as the cells
grew and divided normally. The results of the TOXCAT analysis of FtsB
and FtsL are shown in Figure 5.2b. The CAT activity of both constructs
is above background, although the association of FtsL appears to be weak
(19% of the GpA signal). The activity of FtsB is approximately half of
the GpA signal (48%), indicating that the homo-oligomerization of its TM
domain is likely stable.

FtsB mutagenesis data supports self-associating
helices

To investigate what amino acids are important for the self-association of
FtsB and FtsL, we systematically mutated each position and monitored the
effects on association. The expectation is that the changes at interfacial
positions would perturb oligomerization more than the changes at positions
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Figure 5.2: FtsB self-associates in TOXCAT. (a) TOXCAT is an in vivo assay
based on a construct in which the transmembrane domain under investigation
is fused to the ToxR transcriptional activator of V. cholerae. Transmembrane
association results in the expression of a reporter gene in E. coli cells, which can be
quantified. (b) TOXCAT assay of FtsB and FtsL transmembrane domains. FtsB
shows half of the activity of the strong transmembrane dimer of glycophorin A
(GpA). The activity of FtsL is above baseline but low, indicating a weak propensity
to homo-oligomerize. The monomeric G83I mutant of GpA is used as a negative
control. Data are reported as average and standard deviation over four replicate
experiments.
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Figure 5.3: Mutagenesis of the transmembrane helix of FtsB. The figure shows
the 57 point mutants of the TM domain of FtsB (residues 5-21) analyzed in
TOXCAT. The CAT activity (left axis) is normalized to that of the GpA construct,
as in Figure 5.2. The activity of the wild type FtsB construct is in black. The
mutations at each position are visually grouped by color. Each mutation has
been categorized relative to the wild type FtsB TOXCAT activity (back bar) as
“WT-like” (0: >80% of WT), “Mild” (1: 50-80%), “Severe” (2: 20-50%), or
“Disruptive” (3: 0-20%), as indicated on the right axis and by the dashed lines.
The TOXCAT data for all 57 variants is summarized using the above category
scheme in Figure 5.4.

that are lipid exposed, as commonly observed (for example [???]. We applied
an initial scanning mutation strategy using both Ala (small) and Ile (large)
substitutions and then expanded the mutagenesis to include a larger variety
of hydrophobic amino acids.

Figure 5.3 shows the TOXCAT data for the 57 single amino acid variants
tested for FtsB. All variants displayed similar levels of TOXCAT construct
expression, as verified by Western blot analysis (data not shown). While a
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majority of the variants have a CAT activity level comparable to the wild
type constructs, there are a number of mutations that display drastically
reduced activity. Conversely, several constructs with significantly increased
activity were also observed. To obtain an estimate of the overall sensitivity of
each position, we applied a simple classification scheme for the variantsâŁ™
phenotypes using four categories (dashed lines in Figure 5.3), labeled as
“WT-like” (>80% of wild type CAT activity), “Mild” (50-80%), “Severe”
(20âˆ’50%), and “Disruptive” (0âˆ’20%). We then averaged the scores to
obtain a position specific disruption index. Position-based averaging reduces
some of the natural variability of the biological assay, and the method has
been reliable in identifying the most sensitive positions at the helix-helix
binding interface[??]. The classification data is schematically represented in
Figure 5.4a.

When the average disruption is projected on a helical wheel diagram
(Figure 5.4b), it becomes evident that the sensitive mutations cluster on one
helical face defined by positions T5, L6, L8, L9, L12, L15, Q16, L19 and W20.
When the average disruption is fit to a sine function to analyze its periodicity
(Figure 5.4c), we obtained a value of 3.5 amino acids per turn, which suggests
that the helices of the FtsB oligomer interact with a left-handed crossing
angle. Interestingly, the variants with enhanced CAT activity (A10, W14,
Y17, W20, and F21) are primarily located on the opposite face relative to
the disruptive positions. Therefore, it seems unlikely that these variants
enhance stability by direct participation to the interaction interface.

A similar mutagenesis analysis for FtsL was performed. While a number
of mutations that appear to be disruptive were identified, the disruption
pattern does not clearly map to a helical interface as in the case of FtsB,
indicating that that the weak self-association of FtsL observed in TOXCAT
is unlikely to be specific in nature.
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Figure 5.4: Position specific “average disruption” identifies a helical interface
and an essential polar residue. (a) The scheme summarizes the effect of all
mutations of FtsB-TM measured in TOXCAT. The data have been categorized as
explained in Figure 5.2. An average disruption score is displayed at the bottom
of the scheme. While Gln 16 is the most sensitive position, the introduction of
an Asn side chain restores association almost entirely, indicating that a hydrogen
bond is important for the association. (b) Diagram mapping the average disruption
score to a helical wheel. The disruption pattern clusters on one helical face defined
by positions T5, L6, L8, L9, L12, L15, Q16, L19 and W20. (c) Fit of the average
disruption index to a sine function. The estimated periodicity is approximately 3.5
amino acid per turn, which corresponds to a helical interaction with a left-handed
crossing angle (dotted line).
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Interhelical hydrogen bonding of Gln 16 mediates
FtsB self-association

Among the positions of the TM domain of FtsB that are sensitive to mutation,
Gln 16 is of particular interest. Polar amino acids, such as Gln, Asn, Glu, Asp,
Lys, Arg, and His, are not frequent in TM domains, which are primarily
composed by hydrophobic residues [??]. When present, however, polar
residues can stabilize the association of TM helices through the formation of
hydrogen bonds, which are enhanced in an apolar environment [??]. While
the energetic contribution of hydrogen bonding to membrane protein folding
appears to be on average rather modest (around 1 kcal mol−1), [??] polar
amino acids can be important for the association of model peptides [??] and
of biological systems [???]. When present, polar amino acids are also likely
to play an important structural or functional role, and it has been observed
that phenotypic alterations and diseases are likely to result from mutations
that reverse the polarity of an amino acid in membrane proteins.[??].

When Gln 16 is substituted by hydrophobic amino acids (Ala, Phe, and
Val), the oligomerization of FtsB appears to be severely reduced (Figures 3
and 4). Even when the Gln was replaced by a nonpolar amino acid with
similar size and flexibility (Met) the CAT activity decreased to 22% of WT.
Conversely, when position 16 is substituted by Asn, which has the same
amide terminal moiety of Gln, the variant retains most of the activity (67%).
This result confirms that hydrogen bond formation is likely to play a major
role in stabilizing the TM oligomer. Two side chains that could potentially
hydrogen bond with Gln 16 across the interface are Tyr 17 and Ser 18.
However, the removal of their hydroxyl groups (Y17F and S18A variants)
did not appear to reduce oligomerization. This observation suggests that
Gln 16 is likely to donate to a carbonyl oxygen atom from the backbone or
to form a hydrogen bond with itself (from the opposing helix), a hypothesis
that we structurally investigated using computational modeling, as presented
in the section 5.3.
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Gln 16 and the interfacial amino acids of the FtsB
TM domain of FtsB are evolutionarily conserved

To investigate if the interfacial amino acids, and Gln 16 in particular, are
evolutionarily important, we performed a multisequence alignment of related
FtsB sequences obtained using BLAST [Altschul et al. (1990)] and computed
a consensus. A condensed version of the alignment is shown in Figure 5.5.
The TM region of FtsB appears to be relatively well conserved across a
broad group of gamma and beta proteobacteria. Most importantly, the
pattern of conservation (shaded columns) corresponds remarkably well to
the positions that have the highest sensitivity to mutagenesis (indicated by a
dot). The average amino acid identity conservation of the sensitive positions
is 68%, compared to 42% of the other positions. The most conserved
positions is Trp 20, which is found in over 95% of the sequences. The key
Gln 16 is also almost invariable (91% of the sequences). Interestingly, its
most frequent substitution is His (4%), another polar amino acid. These
observation supports the hypothesis that the structural organization of the
TM domain of FtsB is evolutionarily conserved and therefore must be of
biological importance for cell division.

The X-ray crystal structure of the periplasmic region
of FtsB reveals a canonical coiled coil

After determining the organization of the TM domain of FtsB, we were
interested in establishing if the periplasmic coiled coil region is also com-
patible with the formation of a homodimer. We approached this question
by using X-ray crystallography. Unlike TM helices, which are stabilized by
the hydrophobic environment, the soluble coiled coils tend to be unstable
in isolation [?]. For this reason we adopted a fusion strategy, replacing the
TM region with a soluble globular protein (bacteriophange φ29 Gp7) which
nucleates the helix and stabilizes the coiled coil. This strategy has been
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Figure 5.5: Sequence alignment of FtsB indicates that the interfacial positions
are evolutionary conserved. Partial representation of a sequence alignment of
FtsB. FtsB is relatively well conserved among a diverse group of beta and gamma
proteobacteria. The amino acids that are present in at least 30% of sequence at
each position are shown in bold and shaded. These amino acids are also highlighted
in the consensus sequence at the bottom of the alignment. The positions that are
involved at the FtsB dimer interface (Figure 5.8) are marked with a full circle
(•). A remarkable match between conservation and the interfacial positions is
evident. In particular, positions Q16 (highlighted in orange), L20 and W21 are
almost invariable. The heptad repeat designation (positions a to g) of the coiled
coil region is also given, and the conserved amino acids at the interfacial a and d
positions are highlighted in yellow. In cyan are highlighted three conserved Gly
amino acids (positions 22, 24, and 25) that are likely to confer flexibility to the
linker region between the transmembrane domain and the coiled coil region.
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Figure 5.6: X-ray crystal structure of a Gp7-FtsBCC fusion protein. Ribbon
representation of one of the two dimeric molecules in the asymmetric unit. This
molecule forms a straight canonical coiled coil. The second molecule in the
asymmetric unit exhibits a slight bend, possibly as a result of crystal packing. The
N-terminal Gp7 unit which replaces the transmembrane domain is highlighted in
gray, and the FtsB sequence is in blue. The inset highlights a number of polar
amino acids that are present at the interface in “d” (Q39) and “a” (N43 and
N50) positions.

demonstrated to greatly improve the solubility and crystallization propensity
of coiled coil domains [??].

A Gp7 fusion construct encompassing amino acids 28-63 of FtsB (Gp7-
FtsBCC) crystallized readily, and its structure was solved at a 2.3 Å, with
two dimeric molecules in the asymmetric unit. The structure of the Gp7-
FtsBCC dimer is shown in Figure 5.6, where the Gp7 moiety is highlighted
in gray and the FtsB component in blue. This region of FtsB adopts a
canonical coiled coil conformation. As expected, the two Asn residues that
are present at “a” heptad positions (Asn 43 and 50) form a hydrogen bond
across the interface with their corresponding residues on the other chain
(Figure 5.6b). The coil is straight for one of the dimers (chains A-B), but it
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exhibits a slight kink in the second (near Val 36 on chain C-D). The overall
RMSD between the two dimers is 1.74 Å, but it decreases to 0.41 Å and 0.81
Å when the pre- and post-kink segments are aligned separately; therefore,
the kink is presumably due to the effect of crystal packing.

The structure demonstrates that, like the TM domain, the coiled coil
region of FtsB can also assume a homodimeric form. The structure also
determines that the coiled coil region of FtsB can extend at least to position
60. It is not clear whether the coiled coil would extend further, at least in
the absence of FtsL. Gonzales and Beckwith determined that a C-terminal
truncation of FtsB starting position 55 is still sufficient to interact with
FtsL [?]. Circular dichroism (CD) analysis of a longer constructs that
encompassed seven heptad repeats (positions 28-77) revealed that it is
poorly helical. A Gp7-FtsBCC construct that contains the entire soluble
region of FtsB is also only moderately helical.

Computational model of a FtsB left-handed
homodimer

Molecular modeling can interpret the wealth of information contained in
large-scale mutagenesis and synthesize it into an often highly accurate
structural hypothesis [???]. The modeling of the TM domain of FtsB was
performed with a search protocol implemented with the molecular software
library developed in this laboratory (MSL)[Kulp et al. (2012)]. The program
generates helices in standard conformation and systematically varies their
relative orientation to explore conformational space. In this calculation,
we imposed the formation of a symmetrical oligomer. Consistently with
the experimental data, we also required that Gln 16 forms an interheli-
cal hydrogen bond in the structure. The calculation produced two well
packed dimeric low-energy solutions (Figure 5.8). In one solution (Model
1,panel a), Gln 16 is hydrogen bonded nonsymmetrically with Gln 16 on
the opposite side. In Model 2 (panel b), the side chain is hydrogen bonded



123

Figure 5.7: Computational model of FtsB-TM (Model 1). Stereo representation
of the side chain interactions across the interface. The interacting positions on
the opposite chains are shown in sticks to highlight the arrangement and packing
of the side chains. The van der Waals sphere of the side chains of the monomer
in the foreground (blue) and the surface of the monomer in the background are
also displayed with transparency. L15 and L19 interact against a ridge formed by
W20. L12 and V13 pack against each other across the interface, and so do the
L8/L9 and the T5/L6 pairs.

symmetrically to the carbonyl oxygen of Val 13. The two models are closely
related (1.5 Å RMSD), having a similar left-handed crossing angle and
interhelical distance, and differing by a relative rotation of approximately
60◦ applied around the helical axis. To identify which solution was most
compatible with the experimental data, we applied in silico the same set
of mutations that were experimentally tested and computed an analogous
average disruption. The theoretical and experimental disruption patterns
are compared in Figure 5.8 c,d. Model 2 is in reasonable agreement with
the data overall, but its periodicity appears to be slightly off-phase with
respect to the experimental data, and the match becomes poor toward the
C-terminal end of the helix (panel d). Model 1 (panel c) is in excellent
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Figure 5.8: Molecular model of the FtsB transmembrane dimer. Modeling iden-
tified two well packed low-energy structures in which Gln 16 forms an interhelical
hydrogen bond (panels a and c). Models 1 and 2 are closely related (Cα RMSD
of 1.5 Å), with a left-handed crossing angle (25◦ and 20◦,respectively) and an
interhelical distance of 10.1 Å. In Model 1 the side chains of Gln 16 interact with a
nonsymmetrical hydrogen bond. The helices of Model 2 are rotated axially by about
60◦ with respect to Model 1. The side chains of Gln 16 interact symmetically with
the carbonyl oxygen of Val 13. Panels b and d compare the average disruption
index for the computational mutagenesis applied to the models to the average
disruption observed experimentally. Model 1 shows an excellent agreement with
the experimental data, which is better than Model 2, particularly in the C-terminal
side of the transmembrane domain.
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agreement with the experimental data, and therefore we propose it as the
most likely structural interpretation. Model 1 is illustrated in more detail
in Figure 5.7 where the specific orientation of the side chains at the dimer
interface is shown and the contacts are described. A PDB file of the two
models can be found as downloaded from http://seneslab.org/FtsBdimer.

Flexibility may be important between the TM and
coiled coil regions of FtsB

There is a gap of six amino acids (positions 22-27) between the computational
model of the TM domain and the x-ray structural model of the periplasmic
coiled coil, raising the question of how these two regions are connected. The
simplest hypothesis would be that the two domains form a seamless helical
structure that transverses the TM region and extends into the periplasm.
Our geometric analysis, however, revealed that the two models cannot be
connected by a simple fusion of their helices. While the crossing angle and
interhelical distance of the two domains match each other, the orientation
of the helices around their main axes is not compatible. The interface of the
TM region is rotated around the helical axis by approximately 100◦ with
respect to the interface that would result from a natural extension of the
coiled coil.

The analysis of the sequence alignment (Figure 5.5) also supports the
hypothesis that a helical break is likely present in the linker region between
the domains. The alignment reveals that two Gly residues at positions 22
and 25 are highly conserved (highlighted cyan). Gly 22 is present in 93%
of the sequences. Gly 25 is less ubiquitous (63% of the sequences), but
a third Gly is frequently present at position 24 (47%). Interestingly, the
other amino acids that are prevalent at positions 24 and 25 are Ser and Asn,
two residues that have a relatively high propensity for random-coil regions
[?]. The data suggest that the linker requires either flexibility or adopts a
backbone conformation that would be inaccessible to non-Gly amino acids,



126

Figure 5.9: A theoretical model of a FtsB dimer that encompasses the trans-
membrane and coiled coil domains. The crystal structure of the coiled coil region
of FtsB (yellow) and the computational Model 1 of the transmembrane domain
(blue) were stitched together using a fragment based approach (see Materials and
Methods). The resulting theoretical model includes a hinge between the coiled coil
and the transmembrane helix where the helix unfolds (red). This hinge corresponds
to conserved a Gly rich region in the sequence alignment (G21 and G25, spheres),
suggesting that a flexible connection may be functionally important.

or perhaps both. According to this view, we mined the structural database
for protein fragments that contained two Gly residues with the correct
spacing (GxxG) to find candidate linkers for the two models. We extracted
all xGxxGx fragments existing in high-resolution structures from the PDB,
where x is any amino acid. We also imposed a constraint that two additional
residues at each side of the fragment must assume a helical conformation
(thus the pattern becomes hhxGxxGxhh, where h is any amino acid in
helical conformation). These helical amino acids were geometrically aligned
with the ends of the TM and coiled coil structure. With this procedure, we
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Figure 5.10: A functional hypothesis for the formation of the FtsB/FtsL complex
and its recruitment to the divisome. The transmembrane domain of FtsB self-
associates in E. coli membranes, driven by an interhelical hydrogen bond (Gln 16,
represented by a red circle), but the coiled coil region is likely to be marginally
stable or unstable (I). This finding raises the hypothesis that the interaction with
FtsL is required to stabilize the periplasmic domain. It is likely that FtsL (blue)
laterally associates with a pre-existing FtsB dimer (II). Alternatively, FtsL may
compete with the self-association of FtsB to form an FtsB/FtsL heterodimer (not
represented). Once the periplasmic domain is folded, the C-terminal tails of the
FtsB/FtsL complex (dotted lines) would bind to FtsQ (red), and the proteins would
subsequently be recruited to the division septum (III).

were able to identify the low-energy solution that connects the two models
illustrated in Figure 5.9.

Is FtsL required to stabilize the periplasmic domain
of FtsB?

While the model of the linker region in Figure 5.9 is hypothetical, it raises
the question of whether the gly-rich segment could effectively nucleate
and stabilize the juxtamembrane coiled coil. The question is even more
compelling when it is considered that the Gp7-FtsBCC construct has low
thermal stability. Although the fusion protein crystallizes readily and is
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helical at low temperature, it reversibly unfolds quite rapidly, and it appears
to be completely unfolded at 40 ◦C. Longer constructs, including one that
extends to the entire soluble region of FtsB, showed lower helicity and even
lower stability. The relatively low stability of the coiled coil, however, is not
surprising when it is considered that the structure includes a large number of
polar amino acids (Q35, N43, N50) at the buried “a” and “d” positions, which
are generally occupied by hydrophobic amino acids [??]. These sequence
features appear conserved in the sequence alignment (Figure 5.5). Therefore,
it is possible that association with FtsL may be required for the stabilization
of the periplasmic region of FtsB. The fact that the periplasmic domain of
FtsB may be partially unfolded could also account for some of the cellular
instability of FtsB, which is rapidly degraded in the absence of FtsL [?].

On the basis of our analysis, we hypothesize that a FtsB transmembrane
homodimer forms an initial core that laterally recruits FtsL into a higher-
order oligomer (Figure 5.10), likely a tetramer as proposed also by a recent
bioinformatic analysis of the soluble domains [?]. Given the presence of
several Thr residues in the TM helix of FtsL, an interesting possibility is
that its lateral association could augment the membrane embedded polar
network by forming additional hydrogen bonds with the donor or acceptor
groups that are left unsatisfied on Gln 16 (Figure 5.8a). The formation of
the heterologous complex and the folding of the periplasmic domains may
be a determinant for making FtsB competent for binding to the periplasmic
domain of FtsQ [?], which is required for their septal localization and the
recruitment of the late proteins.
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5.3 Methods

Computational modeling of the ftsB transmembrane
dimer

The transmembrane oligomer of FtsB was modeled with programs written in
house and distributed with the MSL molecular modeling libraries v.1.1 [Kulp
et al. (2012)] available at http://msl-libraries.org. The predictHelixOligomer
program creates standard helices and performs a global rigid search altering
the interhelical separation, the crossing angle, the crossing point, and the
axial orientation of the helices. To impose the formation of an interhelical
hydrogen bond involving Gln 16, the conformational space was prescreened
prior to the analysis to exclude the region of space that was incompatible
with the program filterOligomerByConstraint. This was performed on helices
in which all amino acids were converted to Ala except Gln 16, Tyr 17, and Ser
18. The backbone was kept rigid during the procedure, while the side chains
were optimized using a greedy trials method implemented in MSL [Kulp
et al. (2012); ?]. Side chain mobility was modeled using the energy-based
conformer library applied at the 90% level [?]. The models were evaluated
using a van der Waals function with CHARMM 22 parameters and the
SCWRL hydrogen bond function implemented in MSL. The models were
sorted by their energies. All low-energy models were visually inspected to
verify that they did not include poorly packed solutions containing cavities.
The computational mutagenesis was performed on all low-energy models by
applying the same mutation studied experimentally in the context of a fixed
backbone, followed by side chain optimization. The relative energy of each
mutant was calculated as
δ Emut = (Emut,dimer - Emut,monomer) - (EWT ,dimer - EWT ,monomer)
where EWT ,dimer and Emut,dimer are the energies of the wild type and

mutant sequence in the dimeric state, and EWT ,monomer and Emut,monomer

are the energies of the wild type and mutant sequence in a side chain
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optimized monomeric state with the same sequence. The effect of each
mutation was classified in four categories analogously to the experimental
mutagenesis using the following criterion:

• category 0, “WT-like”, δ Emut < 2 kcal mol−1;

• category 1, “Mild”, 2 6 δ Emut < 4;

• category 2, “Severe”, 4 6 δ Emut < 8;

• category 3, “Disruptive”,δ Emut > 8.

The numerical category values were averaged to calculate the position
dependent average disruption value reported in Figure 5.8.

Creation of TM + coiled coil model

The computational model of the TM domain and the coiled coil region were
connected together using fragments from the PDB database. To do this,
protein fragments of the pattern hhxGxxGxhh (where x is any amino acid,
and h is any amino acid in a helical conformation) were extracted from high
resolution X-ray structures deposited in the PDB database with a resolution
of 2 Å or better. The MSL program connectWithFragments takes these
fragments and aligns the helical end residues with the corresponding residues
in the coiled coil domain and then the modeled TM domain. Only the N,
C, CA, and O atoms were considered for the alignment and the fragments
with the lowest R.M.S.D. were selected. The side chains on the fragment
were replaced with the one corresponding to the FtsB sequence and their
conformation was optimized using a greedy trials method.

FtsB sequence alignment and consensus sequence

The alignment was obtained by entering the sequence of E. coli FtsB as the
query in BLAST (http://blast.ncbi.nlm.nih.gov) using the blastp algorithm
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with default settings. The resulting 464 sequences were aligned with the
multiple alignment facility in BLAST (COBALT). The prevalent amino acid
at each position in the sequence was used to determine a consensus sequence
if it was present in at least 30% of the sequences.

Accession numbers

Coordinates and structure factors of Gp7-FtsB have been deposited in the
Protein Data Bank with PDB ID code 4IFF.

5.4 Conclusions

In this chapter, the first structural analysis of an integral membrane protein
of the bacterial divisome was presented. We demonstrated that the TM helix
of FtsB self-associates in E. coli membranes. The interaction is mediated by
an interhelical hydrogen bond formed by a critical polar residue embedded
in the middle of the hydrophobic region. We also report the structure of
the juxta-membrane domain of FtsB which forms a canonical coiled coil.
The two domains are connected by a linker that is likely flexible. While the
present study does not experimentally establish the precise oligomeric state
of FtsB directly, the mutagenesis, modeling, and crystallographic data are
consistent with the formation of a homodimer.

By defining the protein-protein interaction interface of FtsB and provid-
ing an experimentally validated structural model, the present work suggests
the hypothesis that FtsB and FtsL assemble into a higher-order oligomer
and sets the stage for the biophysical analysis of their heterologous complex.
This study also establishes important groundwork for biological studies in
vivo that will address whether the self-association of FtsB is essential for
division and, specifically, whether the structural features identified here -
the TM interaction interface, the Gly-rich linker and the stability of the
coiled coil - are important for the localization of FtsB, for its association
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with FtsL, and for the recruitment of the other downstream proteins to the
divisome.
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Summary

Carbon hydrogen bonds between Cα-H donors and carbonyl acceptors are
frequently observed between transmembrane helices. Networks of these
interactions often occur at helix-helix interfaces mediated by GxxxG and
similar sequence patterns. Cα-H hydrogen bonds have been hypothesized
to be important in membrane protein folding and association, but evidence
that they are major determinants of helix association is still lacking. This
chapter details a comprehensive geometric analysis of homo-dimeric helices
which reveals the existence of a single region in conformational space with
high propensity for Cα-H...O=C hydrogen bond formation. This region cor-
responds to the most frequent motif for parallel dimers, the GASright, whose
best known example is glycophorin A. The finding suggests a causal link
between the high frequency of occurrence of GASright and its propensity for
carbon hydrogen bond formation. Investigation of the sequence-dependency
of the motif determined that Gly residues are required at specific positions
where only Gly can act as a donor with its “side chain” Hα. Gly also
reduces the steric barrier for non-Gly amino acids at other positions to act
as Cα donors, promoting the formation of cooperative hydrogen bonding
networks. These findings offer a structural rationale for the occurrence
of the GxxxG patterns at the GASright interface. The analysis identified
the conformational space and the sequence requirement of Cα-H...O=C
mediated motifs; we took advantage of these results to develop a structural
prediction method. The resulting program, CATM, predicts ab initio the
known high-resolution structures of homo-dimeric GASright motifs at near
atomic level.

6.1 Introduction

The transmembrane helices of single-span membrane proteins are commonly
engaged in oligomeric interactions that are essential for structure and func-
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tion. These interactions often occur in the form of recurrent structural
motifs. Here we present an analysis of one of the most important motifs
(GASright), showing that its geometry is optimized to form carbon hydrogen
bonds at the helix-helix interface. The analysis reveals the structural basis
for its characteristic GxxxG sequence signature. We built upon the analysis,
creating a method that predicts known GASright structures at near atomic
precision. The work has implications for understanding membrane protein
association, and for the prediction of unknown interacting GASright dimers
among the thousands of single-span proteins in the proteomes of humans
and other higher organisms.

The transmembrane (TM) domains of membrane proteins that span
the bilayer with a single helix are commonly engaged in oligomeric interac-
tions that are essential for the structure and function of these proteins [?].
The interaction between these TM helices are often mediated by recurrent
structural motifs, which are characterized by specific geometries and display
sequence signatures in the form of specific amino acid patterns [?]. In
this work we present a geometric analysis of one of the most important
structural motifs, and implement a method for its structural prediction. The
primary feature of this motif is the presence of inter-helical carbon hydrogen
bonds that occur across the helix-helix interface between Cα-H donors and
backbone carbonyl oxygen acceptors (Cα-H...O=C bonds) [?]. The sequence
“signature” is the occurrence of glycine and other small amino acids (Ala,
Ser) at the helix-helix interaction interface, generally spaced at i, i+4 to
form patterns such as GxxxG, AxxxG, GxxxA, etc. [?]. These small amino
acids are important to reduce the steric barrier for bringing the backbones
of the opposing helices in close proximity, allowing the Cα and carbonyl
oxygen (two backbone atoms) to come in contact and form hydrogen bonds
[?].

While Cα-H...O=C hydrogen bonds can be observed in right- and left-
handed TM helical pairs and in both parallel and anti-parallel orientations,



136

they are most frequently associated with parallel right-handed pairs with
a crossing angle around -40◦ [?]. This structural motif has been named
GASright by Walters and DeGrado, from its sequence signature (Gly, Ala,
Ser) and its crossing angle [?]. GASright is the most frequent motif for
pairs of parallel helices and it appears to be extremely frequent in 2-fold
symmetrical homo-dimers of single-pass proteins. Indeed, out of approxi-
mately a dozen high-resolution TM homo-dimers solved to date as many
as five are representatives of the GASright motif [?]. However, whether the
Cα hydrogen bonds indeed represent a major stabilizing force in GASright

motifs is yet to be demonstrated.

The carbon-hydrogen bonds (Cα . . .C=O)

Carbon hydrogen bonds are commonly observed in proteins and nucleic acids,
where they can contribute to protein structure, recognition or catalysis [?].
While carbons are generally weak donors, the Cα atom of all amino acids is
activated by the electron withdrawing amide groups on both sides, and quan-
tum mechanics calculations suggest that the energy of Cα-H hydrogen bonds
may be as much as one third to half of that of canonical donors in vacuum [?,
?]. Carbon hydrogen bonds have been proposed to be particularly important
in membrane proteins, the membrane being a low dielectric environment
that, in principle, should enhance their strength [?]. However, obtaining
an experimental measurement of their contribution remains difficult. To
date, two groups have addressed this question experimentally, with differing
results. Arbely and Arkin calculated a favorable contribution of -0.88 kcal
mol−1 for the carbon hydrogen bond formed by Gly 79 in glycophorin A,
using isotope-edited IR spectroscopy [?]. Conversely, Bowie and coworkers
found that a Cα-H...O bond to the side chain hydroxyl group of Thr 24
was only marginally stabilizing or even slightly destabilizing in a folding
study of bacteriorhodopsin variants [?]. Mottamal and Lazaridis were able
to reconcile this discrepancy by analyzing the different hydrogen bonding
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geometries of the two systems [?]. Further, quantum mechanical calculations
performed on geometries from protein crystal structures also suggested that
indeed the orientation of the groups can determine whether an interaction
may be strongly favorable or unfavorable [?].

More studies are certainly needed to fully understand the energetic
contribution of Cα hydrogen bonds in membrane protein folding and in-
teraction. However, their common occurrence as structural elements in
membrane proteins postulates that they play an important role [??]. To
further investigate this issue, we present an analysis of the propensity for
Cα hydrogen bond formation as a function of helical geometry in symmetric
homo-dimers. Remarkably, the analysis reveals the existence of a single
high-propensity conformation that corresponds to the common GASright

motif. By defining a suitable frame of reference for the geometries, we were
able to investigate the specific sequence requirements of each position at
the helix-helix interface. The results rationalize the occurrence of GxxxG
patterns in GASright, and provide a physical explanation for the typical
right-handed geometry of the motif based on steric interactions and op-
timization of hydrogen bonding. Overall, the analysis suggests a strong
causal link between the high frequency of occurrence of GASright and its
propensity for Cα hydrogen bond formation.

The analysis defines a map of the conformational space that allows the
formation of networks of carbon hydrogen bonds between helical dimers.
It also identified strict sequence dependencies at specific positions of each
individual geometry. Based on this information, we have also created a rapid
structural prediction method for the identification of Cα-H...O=C mediated
homo-dimers, which we call CATM (Cα TransMembrane). We show that
CATM can predict the known high-resolution structures of homo-dimeric
GASright motifs at near atomic level. Interestingly and perhaps surprisingly,
we found that a minimalistic set of energy functions composed of a hydrogen
bonding and a van der Waals function, is sufficient for achieving a highly



138

accurate level of prediction.

6.2 Results and Discussion

Geometric definition based on the unit cell of the
helical lattice

The first step for our geometric analysis was to identify a practical frame of
reference to express the relative orientation of the helices, as illustrated in
Figure 6.1a. Two parameters are straightforward: the inter-helical distance,
d, and the crossing angle, θ. The other two parameters, the axial rotation,
ω, and the position of the crossing point along the helical axis, Z, require
a reference, such as a specific Cα. We found that it is most intuitive to
define the geometry relative to a reference unit cell in the helical lattice (the
parallelogram connecting four Cα atoms on the helical face illustrated in
Figure 6.1b, and, as a planar projection, in Figure 6.1c). For completeness,
we explored conformational space so that the position of the point of closest
approach P (i.e. the crossing point) samples the entirety of the unit cell.
This is done by expressing Z and ω relative to the helical screw, producing
two transformed unit vectors, Z’ and ω’, that run parallel to the principal
components of the unit cell (Figure 6.1c and 6.2). For convenience, we
defined a naming convention for the positions that is relative to the reference
unit cell. The positions at the four corners were designated as N1, N2, C1
and C2, where “N” and “C” indicate the N- and C-terminal sides of the
parallelogram. These four atoms are relatively spaced at i, i+1, i+4 and
i+5. The above reference frame and convention greatly helps the analysis
and the discussion of the results.
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Figure 6.1: Carbon hydrogen bond formation has preferential regions in inter-
helical space. a) Definition of 4 parameters that define the geometry of a sym-
metrical dimer: the inter-helical distance d; the crossing angle θ; the rotation
of the helix around its axis ω; and the vertical position Z of the point of closest
approach between the two helical axes (the crossing point P). b) The coordinates
can be redefined by expressing them as a function of the unit cell (green) on the
helical lattice that contains the point of closest approach P. The four interfacial
positions that surround the the point of closest approach are designated as N1
(relative position i), N2 (i+1), C1(i+4) and C2 (i+5). The principal axes are the
rotation along the helical screw (ω’) and the vector between C2 and C2 (Z’). The
mathematical relationship between (ω, Z) and (ω’, Z’) is provided in Figure 6.2.
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Figure 6.2: Mathematical definition of Z’ and ω’ coordinates. a) Unit cell of
the helical lattice as with C2 at the origin, as shown in Figure 6.1. In the [ω, Z]
set of coordinates C2 is at [0◦, 0Å]; C1 is at [100◦, 1.5Å]; N2 is at [40◦, 6Å];
and N1 at [140◦, 7.5Å]. b) The unit vectors ω’ and Z’ go in the direction of the
principal components of the unit cell (C2-C1 and C2-N2, respectively). In the
[ω’, Z’] set of coordinates C2 is at [0◦, 0Å]; C1 is at [100◦, 0Å]; N2 is at [0◦,
6Å]; and N1 at [100◦, 6Å]. c) Mathematical equations for the transformation
from one to the other set of coordinates.
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Carbon hydrogen bond analysis reveals a bias for
right-handed structures

To investigate the precise geometric requirements for the formation of inter-
helical carbon hydrogen bonds, we performed a systematic evaluation of all
homo-dimer geometries beginning with poly-Gly. Gly is the only amino acid
that doubles the opportunity for hydrogen bond formation by the virtue of
having two alpha hydrogens oriented approximately perpendicular to each
other (109◦) as well as being the residue that permits the two helices to come
into the closest proximity. Therefore, poly-Gly is the “best case” sequence
for forming carbon hydrogen bond networks, from a geometric stand point.

The hydrogen bonding propensity for each individual geometry was
estimated with a hydrogen bonding function borrowed from SCWRL4 [Krivov
et al. (2009)] and re-parameterized to include Cα donors. The results are
presented as color-coded heat maps in Figure 6.3a. Each graph shows total
hydrogen bond energy as a function of axial rotation (ω’, on the x-axis)
and crossing angle (θ, y-axis) for a different slice in Z’. For simplicity the
inter-helical distance d is not explicitly graphed; instead, for each [ω’, θ,
Z’] point we plot only the energy (Emin) at the optimal distance (dmin).
A larger number of Z’ stacks, as well as the corresponding dmin values for
each point are plotted in Figure 6.4.

A single major high-propensity region is observed in the lower half of
the plot, for right-handed crossing angles in the -30◦ to -50◦ range. This
minimum is situated mid-way between the Cα carbon atoms (C2 and
C1) in the ω’ dimension, between 40◦ to 60◦. The region persists, with
some variation, across the entire range of Z’. Interestingly, the minimum
corresponds to the important GASright structural motif [?], a right-handed
dimer characterized by presence of GxxxG-like patterns at the helix-helix
interface [?]. Structural examples of GASright homo-dimers are glycophorin
A [?] and BNIP3 [?], and the motif is also common within the fold of
polytopic membrane proteins [??].



142

Figure 6.3: Position C1 must be a Gly for carbon hydrogen bond formation. A
map of the carbon hydrogen bonding energy (color bar) as a function of inter-helical
geometry (ω’: x-axis, θ: y-axis; Z’: panels). a) Analysis of poly-Gly: a single
broad minimum is observed centered around a region with a right handed crossing
angle θ of approximately -30◦ to -50◦. The minimum persists with variation along
the entire Z’ stack. b, c and d) Poly-Ala sequences with a single Gly at specific
positions as indicated on the left-hand side of the figure. The propensity to form
hydrogen bonds is almost completely removed compared to poly-Gly unless the
amino acid at position C1 is a Gly. (d) e) Introduction of a GxxxG motif at
the positions N1 and C1 restores some of the low energy regions for higher Z’
values. f) When a third Gly is added at C5 the propensity becomes very similar to
poly-Gly. In each panel the lowest energy (vdw + hbond) across all inter-helical
distances (Emin at dmin) is plotted for each point.



143

Figure 6.4: Hydrogen bonding energies and dmin values of poly-Gly. a) Extended
version of the hydrogen bonding energy maps for poly-Gly as a function of inter-
helical geometry (ω’: x-axis, θ: y-axis; Z’: panels) for poly-Gly, as in Figure 6.3a.
Only the minimum energy Emin across the d dimension is reported. b) Plot of the
corresponding dmin distances at which the minimum energy was recorded. While
the high-propensity region for Cα hydrogen bonding for right-handed structures
display short dmin distances (<7.5Å), the plot demonstrates that other short
distance conformations exist that do not lead to strong Cα hydrogen bond network
formation.

6.3 GASright homo-dimeric motifs require a
Gly at position C1

To investigate the sequence requirements for carbon hydrogen bonding and to
understand the role of GxxxG like patterns in GASright motifs, we expanded
the geometric analysis to poly-Ala helices in which one or more Gly were
inserted in the sequence at specific positions. The poly-Ala sequence has
minimal propensity to form hydrogen bonds (Figure 6.5a) but when a single
Gly is placed at C1, a significant restoration of the energies is observed for
Z’ values between 1.5 to 4.5 Å, that is, for dimers that have the point of
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Figure 6.5: Gly at N1, N2 and C2 in a poly-Ala background does not restore
hydrogen bond propensity. Extended version of the hydrogen bonding energy maps
for poly-Ala sequences with a single Gly at positions other than C1. a) Poly-Ala
with no Gly. b) Gly at N1 as in Figure 6.3b. c) Gly at N2 as in Figure 6.3c. d)
Gly at C2 (not shown in Figure 6.3).
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Figure 6.6: Gly at C1 partially restores hydrogen bond propensity. Extended
version of the hydrogen bonding energy maps for poly-Ala with a single Gly at
positions C1 as in Figure 6.3d.

closest approach in the middle section of the parallelogram (Figs. 6.3d
and in more detail in Figure 6.6). Above and below these Z’ values the
backbones are separated by the Cβ methyl groups of either positions N1 or
C5 (the amino acid at i±4 with respect to C1).

When a single Gly is placed at any position other than C1 (N1, N2 or C2)
the hydrogen bonding energy landscapes present only very shallow minima
(Figs. 6.3b, 6.3c, and in further detail Figure 6.5b, 6.5c and 6.5d). This
is because the Cβ of C1-Ala invariably comes in contact with the opposing
helix, preventing the two helices from being in sufficient proximity. Therefore
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Figure 6.7: A second Gly at N1 or C5 enhances hydrogen bonding in the presence
of Gly at C1. Extended version of the hydrogen bonding energy maps for poly-Ala
with two Gly residues on the right-hand side of the unit cell. a) Gly at N1 and
C1 as in Figure 6.3e. b) Gly at C1 and C6 (not shown in Figure 6.3)

we conclude that C1 is the position with the most stringent requirement for
Gly.

6.4 GxxxG motifs are important on the
right-hand side of the unit cell

If a second Gly is added at i-4 (N1) or i+4 (C5) with respect to C1 to form
a GxxxG motif on the right-hand side of the unit cell, the hydrogen bonding
propensity increases very significantly. If two Gly are placed at N1 and C1,
significant restoration of the propensities is present for Z’ values that bring
the crossing point closest to N1 (Figures 6.10e and 6.7). If two Gly are
placed at C1 and C5, the increase is observed for low Z’ values that have
a crossing point closest to C1 (Figure 6.7). Finally, when N1, C1 and C5
are all Gly to form a Gly zipper motif /emphGxxxGxxxG [?], the energy
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Figure 6.8: Three Gly on the right-hand side of the unit cell restores almost all
hydrogen bonding propensity. Extended version of the hydrogen bonding energy
maps for poly-Ala with Gly residues at N1, C1 and C5, as in Figure 6.3f. The
main minimum is very similar to that observed for poly-Gly (Figure 6.4a)

landscape looks very similar to the poly-Gly results (Figs. 6.12f and 6.8).
Again, addition of Gly residues on any of the left side positions (N2, C2
or C6, while keeping C1 as Gly) has a negligible effect on the hydrogen
bonding energies (Figure 6.9).

The marked distinction between the positions on the right side of the
unit cell (N1, C1, C5) and those on the left side (N2, C2, C6) arises from the
different orientation of the Cβ and Hα atoms with respect to the interface.
This is schematically illustrated in Figure 6.10. The Cβ atom of C2 points
away from the interface whereas the Cβ of C1 is oriented directly toward the
opposing helix. For this reason, larger amino acids can be accommodated
at C2, but Gly is required in C1 to allow the two backbones to come into
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Figure 6.9: A second Gly at N1, N2 or C6 does not restore hydrogen bond
propensity. Hydrogen bonding energy maps for poly-Ala with two Gly residues a)
Gly at N2/C1. b) Gly at C1/C2. c) Gly at C1/C6
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Figure 6.10: Structural distinction between interfacial positions. a) The amino
acids on the left side of the unit cell (N2 and C2) orient their α-hydrogen toward
the interface while their the Cβ points laterally, and thus these position can ac-
commodate larger amino acid types. The situation is reversed for positions N1 and
C1: the α-hydrogen is oriented laterally and the side chain points directly toward
the opposing helix. Larger amino acids in this position may not be accommodated.
b) Gly is the only amino acid type that can form a hydrogen bond using the “side
chain” hydrogen when present at positions N1 or C1. c) Structural example: in
this case the crossing point is close to C1, and there is sufficient space to allow
Ala at N1.

close proximity. A similar argument applies to N1/N2 and C5/C6 as well.

GASright motifs are optimized for Cα hydrogen bond
network formation

Gly performs a second important function as a donor when present at the
right-hand side positions. As illustrated in Figure 6.10a, any amino acid can
donate at C2 because the Hα atom is pointed toward the interface. However,
that same hydrogen is oriented laterally and away from the interface at C1.
As schematically illustrated in Figure 6.10b, only Gly can donate from the
right side positions (C1, N1, C5) because its “side chain” hydrogen is in
the correct orientation. The same point is illustrated in structural terms in
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Figure 6.11: In a GASright motif the C1 and C2 donors are aligned with
carbonyl acceptors at i, i+3 on the opposing helix. a) Helical lattices highlighting
the C1 and C2 donor positions (left, blue) and carbonyl acceptors at i, i+3 on the
opposing helix (right, dark red). b) A superimposition of the two lattices followed
by a -40◦ rotation aligns the donors and acceptors. c) Structural representation
of the same alignment.

Figure 6.10c.
It follows that both amino acids at C1 and C2 can simultaneously donate

to the opposing helix only if C1 is a Gly. However, this requires a correct
alignment with acceptors on the opposing helix. As illustrated in Figure
6.11 using a superimposition of helical lattice projections, the crossing angle
of GASright motifs is optimal for the this purpose. A -40◦ crossing angle
aligns the two donors at C1 and C2 with two carbonyl oxygen atoms spaced
at i and i+3 on the opposing helix. This is also shown in structural terms
in Figure 6.11c.

Overall, the analysis presents a compelling picture: the GASright co-
incides with the major hot-spot for carbon hydrogen bonding. From a
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steric stand point, the geometry appears ideal to allow backbone contacts
as long as C1 and either N1 or C5 (or both) are Gly residues. The Gly
residues at these same positions are also able to cooperatively extend the
hydrogen bonding network by the virtue of having their second hydrogen
oriented toward the interface. Finally, the -40◦ crossing angle is ideal for the
simultaneous involvement of C1 and C2 (and, similarly, N1/N2 or C5/C6)
in hydrogen bonding interactions. In our opinion, this finding suggests a
strong causal link between the high frequency of the GASright motif in the
structural database and its propensity to form networks of carbon hydrogen
bonds, supporting the hypothesis that these interactions are important
contributors to helix-helix association.

A high-throughput structural prediction method for
GASright motif

The analysis presented above shows that only a small fraction of homo-dimer
conformational space allows for the formation of Cα-H...O=C hydrogen
bond networks. It also indicates that positions at the interface may have
stringent sequence requirements for Gly or a limited set of amino acids. On
these premises, we hypothesized that it would be possible to create a rapid
method to recognize sequence signatures compatible with the formation of
GASright motifs.

To develop and implement the method, which we named CATM, we
systematically subdivided the homo-dimer conformational space that allows
formation of Cα-H...O=C bonds into a comprehensive “grid” of represen-
tative dimer conformations. We then established the specific sequence
requirements of each conformation (sequence rules). In this implementation,
we did not limit the space to the right-handed region, but allowed any
dimer that displayed formation of at least two pairs of symmetrical hydrogen
bonds.

When the primary sequence of a TM domain of interest is provided to
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CATM, the sequence is built in full atoms over each representative dimer
that is compatible with the sequence rules. The two helices are placed at
the inter-helical distance in which the two backbones still form a network of
carbon hydrogen bonds (dout, which is pre-calculated for each dimer). The
helices are then moved closer followed by optimization of the side chains,
until the energy reaches a minimum. At that point, the geometry of the
dimer is locally optimized with a brief monte carlo procedure consisting of
cycles in which all four inter-helical parameters changed randomly (d, Z, ω,
θ).

At the end of each docking, the energy of the dimer is subtracted from
the energy of the helices separated at a distance to obtain an interaction
energy. Only the solutions with a negative interaction energy are preserved.
Finally, all closely related solutions are clustered by similarity (RMSD <
2Å), and the lowest energy structure is reported as a representative model
of its cluster. CATM is explained in full detail in the Methods, and is
freely available for download with MSL, a C++ open source macromolecular
modeling software library, at http://msl-libraries.org [Kulp et al. (2012)].

A minimalistic set of energy functions predicts known
structures with near atomic accuracy

We tested CATM against five known homo-dimeric GASright structures:
glycophorin A [?], BNIP3 [??], and three members of the Tyrosine Receptor
Kinase family, EphA1 [?], ErbB1 (EGFR) [?] and ErbB4 [?]. We began test-
ing using a simple combination of hydrogen bonding (Ehbond) and van der
Waals (Evdw) to score the structural models. Perhaps surprisingly, we found
that this minimalistic set of energy functions predicts the structures at near
atomic precision, and in all but one case, the native structure corresponds to
the lowest energy model. The finding validates our hypothesis that Cα hy-
drogen bonds can be an important guiding element for structure recognition,
because they offer multiple anchor points between backbones, and because
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Figure 6.12: CATM prediction of the TM domain of Glycophorin A. a) Backbone
superimposition of the NMR structure (yellow) and the predicted model (blue).
The Cα RMSD in the region that encompasses the interface is indicated and
highlighted in darker blue and yellow in the ribbon. Panels b and c show the
full-atom comparison between the experimental structure and the prediction. The
CATM model is close to atomic level, with a similar network of carbon hydrogen
bonds. The NMR structure and CATM model differ in the orientation of Thr 87,
which hydrogen bonds to its own backbone, while CATM predicts the formation of
an inter-helical canonical hydrogen bond.

they are strongly dependent on good packing, given that the interactions can
be easily disallowed by steric clashes [?](23). All predicted models discussed
below can be downloaded from http://seneslab.org/CATM/structures.

CATM returned 63 solutions for Glycophorin A, the first TM dimer
solved by solution NMR [?](15) and a major biophysical model systems
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Figure 6.13: RMSD from the NMR structure vs CATM energy for glycophorin A.
CATM produces 63 structures for the transmembrane sequence of GpA, clustered
into 5 representative models.. The five clusters are color coded, and the lowest
energy model highlighted by a circle. Model 1 and Model 4 are closely related
neighboring clusters, both right-handed dimers with a geometry similar to the
experimental structure. As for all comparison, the RMSD were calculated in the
range of amino acids that encompasses the dimer interfacial region (from L75 to
T87) as in Figure 6.12
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for membrane protein association [?](24). The 63 solutions were clustered
into 5 distinct models. The relationship between RMSD and energy for
all 63 structures is plotted in Figure 6.13. The lowest energy model
predicted by CATM (Model 1) is a very close match of the NMR structure
(Figure 6.12). Measured over the entire TM helix (residues 73-95), the Cα
RMSD is 1.31 ± 0.24 Å (average and standard deviation measured against
the 20 NMR models). Measured over the segment that encompasses the
interaction interface, discarding the contribution of the divergent ends, the
RMSD reduces to 1.1 ± 0.21 Å (residues 75-87, marked in darker blue in
Figure 6.12a). A side by side comparison of the predicted model and the
experimental structure shows the matching hydrogen bonding network and
the conformation of the interfacial side chains (Figure 6.12, panels b and
c). A difference between the two structures is the conformation of Thr 87
which accepts an Cα hydrogen from Val 84 on the opposing helix in the
NMR structure, while in the lowest energy CATM model the hydroxyl group
of Thr 87 is involved in an inter-helical canonical hydrogen bond, which is
consistent with a solid state NMR structure of the dimer [?]. Figure 6.12
also shows the position of the point of closest approach in the unit cell at
the interface of the dimer. It should be noted that glycophorin A complies
with the “Gly at C1” rule identified in our analysis, as all other structures
analyzed in the following paragraphs. In fact, C1 is the only position that
is invariably Gly across all the examples.

The second structural prediction is BNIP3, a very stable TM dimer [?]
characterized by a very short inter-helical distance (6.5 Å). The interface
consists of A176xxxG180xxxG184 a glycine zipper motif . As shown in Figure
6.14a, the model is extremely similar to the NMR structure [??]. The RMSD
of the helical region of the entire TM domain is 1.10 ± 0.36 Å and only 0.56
± 0.17 Å when it is computed only for the region that participates to the
helix-helix interaction. The model replicates the network of carbon hydrogen
bonds observed in BNIP3 and all interfacial side chains are predicted in the
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Figure 6.14: Structural prediction of BNIP3. CATM produces a single model
for BNIP3 that is extremely similar to the NMR structure. The Cα RMSD of the
helical region of the entire TM domain is 1.10 ± 0.36 Å, which falls to 0.56 ±
0.17 Å when only the region in contact (darker blue and yellow) is considered.
The side by side prediction (panels b and c) shows close similarity in the network
of carbon hydrogen bonds and correct prediction of the orientation of all interfacial
side chains. The model also accurately captures the canonical hydrogen bond
between Ser 172 and His 173.
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correct rotamer, as evident in the side-by-side comparison of panels b and
c of Figure 6.14. In addition, CATM accurately captures the inter-helical
hydrogen bond between the side chain of His 173 (donor) and Ser 172
(acceptor), an important feature that contributes to the dimer’s stability
(27).

The third comparison is EphA1, which was solved by solution NMR
in bicelles at two different pH conditions [?]. The dimer displays a confor-
mational change induced by change in protonation state of a membrane
embedded Glu residue (E547). CATM captures both conformations with
good accuracy (Figure 6.15). The low pH structure is predicted by Model
1 with a Cα RMSD of 1.26 Å. The higher pH structure is predicted by
Model 4 with an RMSD of 1.48 Å. The structures are related by a shift
of the crossing point of about 3 Å toward the C-terminus that brings the
crossing point from the top half to the bottom half of the Glycine zipper
motif (A550xxxG554xxxG558 ), as schematically shown in Figure 6.15c.
Interestingly, the authors also report the presence of a minor component of
some cross-peaks in the higher pH conditions, suggesting a second species
(about 10%) was present in the sample [?]. While a structural model could
not be calculated and was not reported for this minor species, the authors
suggest that this competing state associates through the C-terminal GxxxG-
like motif (A560xxxG564 ), and identify the amino acids involved at the
interface as Leu 557, Ala 560, Gly 564 and Val 567. This description is
consistent with the interface of Model 2 produced by CATM.

The final two test cases are both members of the epidermal growth factor
receptor family [Schlessinger (2000)]. As shown in Figure 6.16a, the NMR
structure of ErbB4 [?] is predicted well by CATM, with an RMSD of 0.81
Å across the interacting region. However, our prediction of ErbB1 (EGFR)
is not in agreement with the experimental structure, the only case among
the five structures tested. The experimental structure interacts through
the N-terminal TxxxG motif [?], and this structure is predicted by CATM’s



158

Figure 6.15: CATM predicts multiple states of the EphA1 Tyrosine Receptor
Kinase. a) the structure of the TM domain EphA1 determined at a low pH is well
predicted by CATM Model 1. b) the structure obtained at higher pH is matched
by Model 4. The conformational shift between low and high pH is highlighted
schematically in the unit cell representation. The interface remains centered on
the Gly-zipper motif (AxxxGxxxG) but the crossing point shifts (arrow) toward
the C-terminus in the adjacent unit cell. There is also an increase of the crossing
angle. EphA1 has multiple GxxxG-like motifs and produces four models. Model 2
interacts through a C-terminal AxxxG motif. Model 3 is closely related to Model
1.
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Figure 6.16: Prediction of ErbB4 and ErbB1. a) ErbB4 is predicted by the top
CATM model, while b) ErbB1 (EGFR), is predicted by the third model. Among
the five structured tested, ErbB1 is the only structure that is not predicted by the
lowest energy model.
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Model 3 with a Cα RMSD 0.77Å (Figure 6.16b). Instead Model 1 is a well
packed dimer that interacts through C-terminal side AxxxG motif, of the
TM helix and is a likely candidate for a postulated inactive state of the
receptor [??]. As in the case of EphA1, this finding highlights the potential
of offering alternative structural models that may reflect distinct functional
states of the TM dimers.

6.5 Conclusions

We have presented an analysis of carbon hydrogen bonding as a function
of helix orientation in TM homo-dimers. The analysis demonstrates that
there is a single region of conformational space for homo-dimers with a high
propensity for formation of hydrogen bond networks. Remarkably, this area
corresponds to the GASright motif, lending strong support to the hypothesis
that optimization of carbon hydrogen bonding is a major driving factor in
its assembly. The analysis also provides a rational structural interpretation
of the occurrence of GxxxG motifs in GASright homo-dimers, indicating
that the Gly residues are essential on a specific side of the helix interface
for steric reasons and to act as hydrogen bonding donors.

Based on the analysis, we have created a rapid method for the structural
prediction of GASright homo-dimers. We have shown that with a surprisingly
simple set of energy functions (Ehbond + Evdw), CATM predicts the known
structures of GASright homo-dimers with near atomic precision. Future work
is necessary to refine, verify and expand the scoring functions. For example,
a membrane model such as a depth-depended potential [?] or an implicit
solvent [?], is likely to improve the predictions and any correlation between
the computational score and the thermodynamic stability. Nevertheless,
CATM appears to capture the essence of GASright motifs already in the
current form, and therefore the method is already applicable to the rapid
prediction of unknown structures.
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6.6 Methods

Software

All calculations were implemented and performed using the MSL molecular
modeling libraries v.1.1 [Kulp et al. (2012)](18), an open source C++ library
that is freely available at http://msl-libraries.org.

Creation of inter-helical geometries

Two helices, 31 residues in length, were created in idealized conformation,
oriented with their axes aligned with the z-axis and the Cα atom at position
16 placed on the x-axis. Position 16 is the position designated as C2 in Figure
6.1c. To create a dimer, the following transformations were performed in
order: a rotation around the z-axis (determining the axial rotation ω), a
translation along the z-axis (determining the position of the crossing point Z
in the z-dimension), a rotation around the x-axis (determining the crossing
angle θ), and a translation along the x-axis (determining the inter-helical
distance d). One of the two helices was finally rotated around the z-axis by
180◦ to produce 2-fold symmetry.

The geometric analysis was performed so that the point of closest ap-
proach P would explore the entire unit cell defined by N1,N2,C1,C2 as in
Figure 6.1c. The transformations were performed using a redefined set of
geometric parameters [d, θ, ω’, Z’], where ω’, Z’ are unit vectors that go
in the direction of the principal components of the unit cell of the helical
lattice using the mathematical relationships defined in Figure 6.2. The
conformational space was explored at discrete intervals with the following
step sizes: d: 0.1 Å; ω’: 1◦; Z’: 0.1 Å; θ: 1◦. The crossing angle θ was
constrained to be in the -55◦ to +55◦ range.
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Energy functions and definitions

Energies were determined using the CHARMM 22 van der Waals function
[MacKerell et al. (1998)] and the hydrogen bonding function of SCWRL4
[Krivov et al. (2009)], as implemented in MSL C++ libraries [Kulp et al.
(2012)]. Cα hydrogen bonds have been included as part of the energy
functions of ROSETTA Membrane [?]. We derived a similar adaptation
for the SCWRL4 function by adding the following parameters for CÎ±
donors: B=60.278; D0 = 2.3Å;σd = 1.202Å;αmax = 74.0◦;βmax = 98.0◦.
These parameters reduce the hydrogen bonding energy to approximately half
that of canonical bonds, and adjust the optimal distance and the angular
dependencies.

In the text below the energy of a model is computed as the difference
between the the dimer energy minus the energy of the separated monomers
(referred to as interaction energy), with the side chains optimized inde-
pendently in the two states. All side chain optimization procedures were
performed using the Energy-Based Conformer Library applied at the 95%
level [?] with a greedy trials algorithm [?] as implemented in MSL.

Determination of Cα-H...O energy landscapes

The energy landscapes were determined for all [θ, ω’, Z’] coordinates. Two
helices were initially placed at d = 10 Å. The energies were evaluated and
the helices were moved closer to each other in 0.1 Å steps until a lowest
energy (Emin) conformation was identified at a distance dmin. Figure 6.3
plots Emin as a function of [θ, ω’, Z’]. A plot of the corresponding dmin

values is provided for poly-Gly in Figure 6.4.

Development of CATM

CATM is a structure prediction program that performs a systematic search in
the subset of homo-dimer conformational space that allows formation of inter-
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Figure 6.17: Schematic illustration of CATM. Given a sequence (a), the sequence
is threaded onto each of the 463 representative geometries (b) in all possible
registries on the α-helices (c). For each thread the sequence rules are checked (d,
in this example, we are only checking for a required Gly at C1). If the rules are
met, the sequence is built in all atoms and the structure is optimized (e), and
an interaction energy is calculated (f). If the interaction energy is negative, the
solution is accepted (g). The solutions are then clustered (h) to produce a series
of final models, ranked by energy (i)
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helical Cα-H...O hydrogen bonds. The creation of CATM consisted of the
definition of the search space and the derivation of a set of sequence exclusion
rules. The execution phase of CATM (the actual structure prediction for a
given sequence) is schematically illustrated in Figure 6.17.

Definition of the search space

The definition of the search space was based on the geometric analysis of
poly-Gly. We selected all conformations in [θ, ω’, Z’] space that display at
least four inter-helical Cα-H...O hydrogen bonds (two symmetrical pairs).
This search yielded a set of approximately 90,000 structures which were then
filtered by similarity using a 2.0 Å RMSD criterion to create a representative
set of 463 geometries. For each representative geometry we recorded the
maximum inter-helical distance in which four hydrogen bonds still exist
(dout).

Definition of the sequence rules

Each representative geometry G was constructed as poly-Gly and was set at
dout. Every amino acid type X was built at every position j in every G and
its conformation was optimized. If the interaction energy was unfavorable by
more than 10 kcal mol−1, a sequence rule was recorded stating that the X is
not allowed at j in G. These rules allow for the exclusion of non-productive
sequences from the expensive all atom modeling phase.

The CATM program

The input sequence is threaded into a set of different registers at each of
the 463 representative geometries (Figure 6.17). For each register, CATM
checks if the sequence rules are met. If the rules are met, the sequence
is built on the backbone in all atoms, and the helices are placed at dout.
The inter-helical distance is reduced in steps of 0.1 Å, and at each step the
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side chains are optimized and the interaction energy is evaluated until a
minimum energy is found. To further optimize the dimer, the geometry is
then subjected to 10 monte carlo backbone perturbation cycles in which
all inter-helical parameters (d, θ, ω, Z) are locally varied. If the final
interaction energy is negative, the solution is accepted. The solutions are
then clustered using an RMSD criterion (2 Å) to produce a series of distinct
models, with all individual solutions provided as an NMR-style PDB file.
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7 molecular software library (msl): an
open-source tool for molecular modeling

based on

Kulp DW, Subramaniam S, Donald JE, Hannigan BT, Mueller BK, Grig-
oryan G and Senes A “Structural informatics, modeling and design with an
open-source Molecular Software Library (MSL)”, Journal of Computational
Chemistry 2012 33(20), 1645-61

∗This software package is a joint effort of the listed authors. I have
been involved with MSL from its early stages (Sep. 2008) and have made
significant contributions to the development of functions related to energetics,
conformational sampling, analysis and more. My specific contributions are
detailed at the end of the chapter.
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Summary

This chapter presents the Molecular Software Library (MSL), a C++ library
for molecular modeling based on [Kulp et al. (2012)]. MSL is a set of tools
that supports a large variety of algorithms for the design, modeling, and
analysis of macromolecules. Among the main features supported by the
library are methods for applying geometric transformations and alignments,
the implementation of a rich set of energy functions, side chain optimization,
backbone manipulation, calculation of solvent accessible surface area, and
other tools. MSL has a number of unique features, such as the ability of
storing alternative atomic coordinates (for modeling) and multiple amino acid
identities at the same backbone position (for design). It has a straightforward
mechanism for extending its energy functions and can work with any type
of molecules. Although the code base is large, MSL was created with ease of
developing in mind. It allows the rapid implementation of simple tasks while
fully supporting the creation of complex applications. Some of the features of
the software are demonstrated here with examples that show how to program
complex and essential molecular modeling tasks with few lines of code. MSL
is an ongoing and evolving project, with new features and improvements
being introduced regularly, but it is mature and suitable for production and
has been used in numerous protein modeling and design projects [???]. MSL
is open-source software, freely downloadable at http://msl-libraries.org. We
propose it as a common platform for the development of new molecular
algorithms and to promote the distribution, sharing, and reutilization of
computational methods.

7.1 Introduction

Over the past decades, computational biology has been contributing more
and more frequently to the understanding of macromolecular structure
and the mechanisms of biological function. Although the number of high-
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resolution protein structures in the Protein Data Bank (PDB) is steadily
growing, the experimental methods currently available for structural de-
termination do not nearly approach the level of throughput that would be
necessary to characterize the universe of known protein sequences [?]. This
generates high interest in reliable and affordable protein modeling methods,
as means for investigating the function of proteins and predicting their
interactions and specificity. Computational methods can take advantage of
today’s large structural database and essentially expand it. Homology-based
methods have now reached excellent levels of performance in predicting
the structure of many proteins when a closely-related protein has been
experimentally determined [??]. Comparative structural analysis can be
used to identify common themes and key interactions in sets of related pro-
teins. The structural database can also be disassembled into fragments, and
these fragments form the basis for ab initio structural prediction methods
and provide templates for filling in the missing elements in experimental
structural models [?]. Molecular modeling can today work directly in com-
bination with experimental structural methods such as NMR to help build
accurate structural models from incomplete or reduced dataset[?]. Modeling
is also becoming a fundamental tool for assisting experimental design, ra-
tional mutagenesis, and protein engineering. It also provides an invaluable
framework for interpreting experimental data. Such approaches have greatly
helped to improve our knowledge of proteins that are intrinsically difficult
to study with the traditional structural methods, such as, for example, the
integral membrane proteins [???]. Finally, molecular modeling methods
today allow the creation of proteins de novo. Protein design has become
an important tool for investigating the fundamental principles that govern
stability, specificity, and function in proteins and can be applied to the
creation of new reagents and probes.[????]

With the continued increase in power and decrease in cost of high-
throughput computing, computational biology is likely to continue to grow



169

and become even more integrated with the experimental disciplines. To fully
support this trend and promote the use of the existing methods and the
creation of new powerful algorithms, it is important to spread the availability
of molecular modeling libraries, providing the community with tools that are
fully featured, powerful, easy to use and, ideally, free to distribute and modify.
Here, we present MSL (the Molecular Software Library), an open-source
C++ library that fulfills these criteria and supports the creation of efficient
methods for structural analysis, prediction, and design of macromolecules.
MSL is not a single program but a set of objects that facilitate the rapid
development of code for molecular modeling. The object-oriented library
is targeted toward researchers who need to develop simple or sophisticated
modeling and analysis programs. The main objectives of MSL are to allow
the implementation of simple tasks with maximum ease (e.g., measuring
a distance or translating a molecule) while fully supporting the creation
of complex and computationally intensive applications (such as protein
modeling and design). This objective has been achieved by developing
efficient code. The design of intuitive APIs (Application Programming
Interfaces) and the maximization of the modularity of the objects has allowed
to keep the code base simple and easily expandable, agnostic to the type of
molecule, and thus suitable to work with proteins, nucleic acids, or any other
small or large molecules. For these reasons, MSL is ideal for supporting the
implementation of a large variety of structural analysis, modeling, and design
algorithms that appear in the growing computational biology literature. The
adoption of a common platform for the implementation of computational
methods would greatly benefit the scientific community as a whole. It would
help to avoid fragmentation and promote the distribution of the methods and
their integration. The open-source model allows the continued development
of the code, higher scrutiny and quality control, and deeper understanding
of the methods. This model has been successfully adopted by other scientific
projects (e.g., the bioinformatics toolsets BioPerl [?] and BioPython [?]).
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The development of the MSL libraries has been active over the past
4 years and a growing list of algorithms has already been implemented,
with more features and enhancements to come. The platform has been
successfully applied to numerous areas of biological computing, including
modeling [??] and de novo design of membrane proteins [?] modeling large
conformational changes in viral fusion proteins,[?] designing a switchable
kemp eliminase enzyme,[?] studying distributions of salt bridging interac-
tions,[?] the development of an empirical membrane insertion potential [?],
the development of new conformer libraries,[?] and other ongoing projects.
In this article, we highlight a number of unique and powerful capabilities
of MSL, using several key worked examples to provide the reader with a
basic understanding of the MSL object structure. For example, we illustrate
how to access molecular objects, apply geometric transformations, model a
protein, make mutations, apply a rotamer library, calculate energies, and
do side chain optimization. Further, we illustrate a side chain conformation
prediction program that is distributed with the library and present its perfor-
mance statistics against a large set of proteins structures. A comprehensive
set of tutorials and helpful documentation are currently being assembled on
the MSL website (http://www.msl-libraries.org) where MSL is also freely
available for download.

Molecular representation: flat-array versus
hierarchical structure

At the very core of any molecular modeling software is the representation of
the molecule. A simple level of representation may be sufficient for a number
of tasks. For example, a program that translates a molecule only requires
access to the atoms’ coordinates. In such case, a “flat-array” of individual
atoms can be rapidly created and is memory efficient. This representation
would allow a quick iteration over atoms to apply the transformation. Other
tasks may benefit from a more complex representation. For example, a
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program for computing backbone dihedral (φ/ψ) angles of a position needs
to access the C and N atoms of the preceding and following amino acids. The
identification of the relevant atoms becomes more rapid if the macromolecule
is stored as a “hierarchical” representation, in which the atoms are subdivided
by residue, and the residues are ordered into a representation of the chain.
Because of these conflicting needs, MSL implements both flat-array and
structured hierarchical approaches and lets the programmer decide what is
most efficient and appropriate for a given task.

The flat-array representation - called AtomContainer - is schematically
explained in Figure 7.1. The AtomContainer acts as an array of Atom
objects that can be iterated over using an integer index. Each Atom holds
all of its relevant information (such as atom name, element, atom type,
coordinates, and bonded information). Inside the Atom, the coordinates are
held by a CartesianPoint, which handles all the geometric functions. The
AtomContainer has functions for inserting and removing atoms, checking
their existence by a string “id” (chain id + residue number + atom name,
i.e., “A,37,CA”), and has functions for reading and writing PDB coordinate
files [?].

The hierarchical representation in MSL has seven nested levels, as illus-
trated in Figure 7.2. The System is the top-level object that contains the
entire macromolecular complex and is divided into Chain objects. Chains
are divided into Position objects. Within the Position, there is one (and
sometimes more) Residue object, corresponding to the specific amino acid
types in a protein, for example Leu or Val. The distinction between a
Position and a Residue enables easy implementation of mutation and pro-
tein design algorithms, where the position along the protein chain remains
constant, but the amino acid types within the Position are allowed to change.
The Residue can be divided into any number of AtomGroup objects, which
contains the Atom objects. This subdivision allows for electrostatic groups
or other subdivisions of atoms, such as backbone or side chain atoms.
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Figure 7.1: The “flat-array” molecular container: the AtomContainer. The
AtomContainer is the lightweight molecular container included in MSL. Internally,
it contains an array of Atom pointers (as an AtomPointerVector), and it is ideal
for tasks that require iteration among atoms. Each Atom contains one or more
coordinates in the form of CartesianPoints.

Printing out molecular objects

MSL is created with ease of programming in mind. An example of this
philosophy is MSL facilitates the printing of information contained within
molecular objects, which is also extremely convenient for debugging. The
following example shows how to print atoms and higher molecular containers
through the « operator.

1 # include " AtomContainer .h"
2 # include " System .h"
3
4 using namespace MSL; // use the necessary namespaces
5 using namespace std;
6
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7 int main () {
8 AtomContainer molAtoms ; // the flat -array container
9 molAtoms . readPdb ("input.pdb");

10
11 Atom & a = molAtoms [0]; // get an atom by reference
12 cout << " Printing an Atom" << endl;
13 cout << a << endl;
14
15 cout << " Printing an AtomContainer " << endl;
16 cout << molAtoms << endl;
17
18 System sys; // the hierarchical container
19 sys. readPdb ("input.pdb");
20
21 cout << " Printing a System " << endl;
22 cout << sys << endl;
23 }

The Atom prints its atom name, residue name, residue number, chain
id, and the coordinates. As explained later, atoms can store more than one
set of coordinates, called alternative conformations in MSL. The current
conformation and total number of conformations is printed in parenthesis.
The AtomContainer prints a list of all its atoms. The System prints its
sequence, where each chain identifier starts the line followed by the three
letter amino acid codes of its sequence. The residue numbers are included
in curly brackets for the first and last residue, or when the order breaks in
the primary sequence numbering.

Printing an Atom
N ALA 1 A [ 2.143 1.328 0.000] (conf 1/ 1) +

Printing an AtomContainer
N ALA 1 A [ 2.143 1.328 0.000] (conf 1/ 1) +
CA ALA 1 A [ 1.539 0.000 0.000] (conf 1/ 1) +
CB ALA 1 A [ 2.095 -0.791 1.207] (conf 1/ 1) +
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C ALA 1 A [ 0.000 0.000 0.000] (conf 1/ 1) +
..

Printing a System
A: {1}ALA ILE VAL TYR SER LYS ARG LEU {9}ALA

Iterating through chains, positions, and atoms

All containers, even those in MSL’s hierarchical representation, can operate
on atoms as ordered lists. The AtomContainer, System, Chain, Position,
and Residue all contain a list of their atoms (stored internally as an Atom-
PointerVector object, which is an array class derived through inheritance
from the Standard Template Library [?] vector class). The individual atoms
can be accessed using the square bracket operator ([ ]). The next example
shows how to iterate and print all atoms in a System.

1 # include " System .h"
2
3 int main () {
4 System sys;
5 sys. readPdb ("input.pdb");
6
7 for (uint i=0; i<sys. atomSize (); i++) {
8 cout << sys[i] << endl; // print the i-th atom
9 }

10 }

The hierarchical architecture of the System also allows iterate through
positions and chains using the appropriate get function.

1 ..
2 for (uint i=0; i<sys. positionSize (); i++){
3 cout << sys. getPosition (i) << endl;
4 // print the i-th position
5 }
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Figure 7.2: The “hierarchical” molecular container: the System and its subdivi-
sions. MSL has several levels of molecular representation, from the System to the
Atom, described in the figure. Note the distinction between a Position (designated
with a number) and the Residue (a specific amino acid type, such as “Leu” and
“Ile”). A Position can have multiple residues (only one being active at any given
time), which is useful for introducing mutations and protein engineering. The
Atom objects are generated within the AtomGroup, but every container builds
an array of pointers to the atoms (an AtomPointerVector) that belong to their
branch. These atom pointers can be requested with a getAtomPointers() call and
passed to external objects for processing.
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6 for (uint i=0; i<sys. chainSize (); i++){
7 cout << sys. getChain (i) << endl;
8 // print the i-th chain
9 }

10 }

Accessing atoms by id and measuring distance and
angles

A powerful alternative mechanism to access an atom is through a comma-
separated string identifier formed by the chain id, residue number, and atom
name (i.e., “A,37,CA”). This can be done intuitively using a square bracket
operator ([“A,37,CA”]). The following example demonstrates how to access
atoms with both the numeric index and string id operators. It also shows
how to calculate geometric relationships between atoms (using the Atom’s
functions distance, angle, and dihedral).

1 # include " AtomContainer .h"
2
3 int main () {
4 AtomContainer molAtoms ;
5 molAtoms . readPdb ("input.pdb");
6
7 // Using the operator [ string _id]
8 double distance = molAtoms ["A,37, CD1"].
9 distance ("B,45, ND1");

10
11 // Using the operator [int _index ]
12 double angle = molAtoms [7].
13 angle( molAtoms [8], molAtoms [9]);
14
15 // measure the phi angle at position A 23
16 double phi = molAtoms ["A,22,C"].
17 dihedral ( molAtoms ["A,23,N"],
18 molAtoms ["A,23,CA"], molAtoms ["A,23,C"]);
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19 return 0;
20 }

For brevity and simplicity, the examples illustrated here often omit
recommended error checking code. In the above example, it would be safe
to check for the existence of the atoms with the atomSize and atomExists
functions before applying the measurements:

1 if ( molAtoms . atomSize () >= 10) {
2 double dihe = molAtoms [7]. dihedral ( molAtoms [8], molAtoms

[8],
3 molAtoms [9]);
4 }
5
6 if ( molAtoms . atomExists ("A,37, CD1") &&
7 molAtoms . atomExists ("A,37, ND1")) {
8 double d = molAtoms ("A,37, CD1").
9 distance ( molAtoms ("A,37, ND1"));

10 }

Communication between objects with the
AtomPointerVector

The molecular objects store all their atoms internally as an array of atom
pointers, the previously mentioned AtomPointerVector. The memory is allo-
cated (and deleted) by the molecular object that created the atoms. All atom
pointers of a molecular object can be obtained with the getAtomPointers()
function.

1 # include " AtomContainer .h"
2
3 int main () {
4 AtomContainer molAtoms ;
5 molAtoms . readPdb ("input.pdb");
6
7 // get the internal array of atom pointers
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8 AtomPointerVector pAtoms = molAtoms . getAtomPointers ();
9

10 for (uint i=0; i< pAtoms .size (); i++) {
11 cout << *( pAtoms [i]) << endl; // print the atom
12 }
13 return 0;
14 }

The AtomPointerVector serves a fundamental purpose in MSL as the
intermediary of the communication between objects that perform operation
on atoms. The next section exemplifies this work-flow.

Rigid body transformations of a protein structure

The Transforms object is the primary tool used in MSL to operate geometric
transformations. It communicates with the AtomContainer through an
AtomPointerVector. As shown in the example, just five lines of code are
sufficient for reading a PDB coordinate file, applying a translation and
writing the new coordinates to a second PDB file. The reading and writing
of the coordinate files is accomplished by the readPdb and writePdb functions
of the AtomContainer.

1 # include " AtomContainer .h"
2 # include " Transforms .h"
3
4 int main () {
5 AtomContainer molAtoms ;
6 molAtoms . readPdb ("input.pdb");
7
8 Transforms tr;
9 tr. translate ( molAtoms . getAtomPointers (),

10 CartesianPoint (3.7 , 4.5, -2.1));
11
12 molAtoms . writePdb (" translated .pdb");
13 return 0;
14 }



179

Atom Selections

The AtomPointerVector is also a mediator in another important function:
the selection of subsets of atoms. The AtomSelection object takes an Atom-
PointerVector and a selection string (i.e., “name CA”) to create subsets of
atoms based on Boolean logic. The resulting selection is returned as another
AtomPointerVector. The syntax adopted is similar to that of PyMOL, a
widely used molecular visualization program [?]. In the following example,
a selection is used to rotate only the atoms belonging to chain A. The
communication between AtomContainer, AtomSelection, and Transforms
through the AtomPointerVector is made explicit.

1 # include " AtomContainer .h"
2 # include " Transforms .h"
3 # include " AtomSelection .h"
4
5 int main () {
6 AtomContainer molAtoms ;
7 molAtoms . readPdb ("input.pdb");
8
9 AtomPointerVector pAtoms = molAtoms . getAtomPointers ();

10
11 // initialize AtomSelection
12 AtomSelection sel( pAtoms );
13 AtomPointerVector pSelAtoms = sel. select ("chain A");
14
15 // set Z as axis of rotation
16 CartesianPoint Zaxis (0.0 , 0.0, 1.0);
17
18 Transforms tr;
19 tr. rotate (pSelAtoms , 90.0 , Zaxis);// 90 degree
20
21 molAtoms . writePdb (" rotated .pdb");
22 return 0;
23 }
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The example above shows a simple selection string but the logic can be
complex. For example, “name CA+C+N+O and chain B and resi 1-100”
will select the backbone atoms of the first 100 residues of chain B. A label
can be added at the beginning of the selection string (“bb_chB, name
CA+C+O+N and chain B”). The label itself can then be used as part of the
logic in a subsequent selection, as seen in lines 20 and 25 of the following
example.

1 # include " AtomContainer .h"
2 # include " AtomSelection .h"
3
4 int main () {
5 AtomContainer molAtoms ;
6 molAtoms . readPdb ("input.pdb");
7
8 // create a selection passing all atom pointers
9 AtomSelection sel( molAtoms . getAtomPointers ());

10
11 // select all CA atoms in " allCAs " and print size
12 AtomPointerVector pSelAtoms =
13 sel. select ("allCAs , name CA");
14 cout << "The selection allCAs contains " <<
15 pSelAtoms .size () << " atoms" << endl;
16
17 // selections can be operated with complex logic
18 // all backbone atoms of chain B
19 AtomPointerVector pSelAtoms2 = sel. select ("bb_chB ,
20 name CA+C+O+N and chain B");
21
22 // a selection name can be used as part of the logic
23 // selecting backbone atoms of residue 9 on chain B
24 AtomPointerVector pSelAtoms3 = sel. select ("res9B_bb ,
25 bb_chB and resi 9");
26 }
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7.2 Molecular Modeling

Altering the conformation of the molecule

MSL offers a number of methods for remodeling a protein. The coordinates
of an atom can be set with the setCoor function.

1 Atom a;
2 a. setCoor (3.564 , -2.143 , 6.543) ;

The conformation of a protein can also be changed by rotating around
bonds, changing the bond angles, and varying the bond distances. In other
words, conformations can be set using a system of “internal” coordinates
(bonds, angles, and dihedrals). The Transforms object offers functions
that can be used to model a protein (setBondDistance, setBondAngle, and
setDihedral). The next example shows how to alter the conformation of the
backbone (φ/ψ angles).

1 # include " AtomContainer .h"
2 # include " AtomSelection .h"
3
4 int main () {
5 AtomContainer molAtoms ;
6 molAtoms . readPdb ("input.pdb");
7
8 // before changing the conformation we need to know
9 // what atoms are bonded to each other

10 AtomBondBuilder abb;
11 abb. buildConnections ( molAtoms . getAtomPointer ());
12
13 // lets change the phi/psi of residue A 37
14 Transforms tr;
15 tr. setDihedral ( molAtoms ("A,36,C"),molAtoms ("A,37,N"),
16 molAtoms ("A,37,CA"),molAtoms ("A,37,C") , -62.0);
17 tr. setDihedral ( molAtoms ("A,37,N"),molAtoms ("A,37,CA"),
18 molAtoms ("A,37,C"),molAtoms ("A,38,N") , -41.9);
19 }
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Because in most cases, the intent is to move two parts of the protein
relative to each other, and not simply one atom, it is necessary to have the
atom connectivity information. This was done in lines 10-11 by passing the
atoms to AtomBondBuilder, an object that creates the bond information
based on the atomic distances. The connectivity information is used to up-
date the coordinates of the atoms that are downstream of the dihedral angle
(any atom between the last dihedral atom and the end of the chain). This
means that a setDihedral invocation takes all the coordinates of the atoms
downstream and multiplies them by the appropriate transformation matrix.
The strategy illustrated above is straightforward to implement for small
changes (i.e., edit a side chain dihedral angle). For larger conformational
changes, the procedure is inefficient because most of the coordinates would
be recalculated multiple times. A more economic alternative is to edit a
table that stores all internal coordinates and use it to rebuild the molecule
in the new conformation one atom at the time - a concept borrowed from
the molecular force field and dynamics package CHARMM [Brooks et al.
(1983)]. MSL implements an object for internal coordinate editing called
the ConformationEditor.

1 # include " System .h"
2 # include " PDBTopologyBuilder .h"
3 # include " ConformationEditor .h"
4
5 int main () {
6
7 // build the IC table using PDBTopologyBuilder
8 System sys;
9 PDBTopologyBuilder PTB(sys ," pdb_topology .inp");

10 PTB. buildSystemFromPDB ("input.pdb");
11
12 // Read the angle definitions such as phi , psi ,
13 // and conformations such as "a-helix"
14 ConformationEditor CE(sys);
15 CE. readDefinitionFile (" PDB_defi .inp");
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16
17 // Edit LEU A 37 to have chi1 =62.3 and chi2 =175.4
18 CE. editIC ("A ,37", "N,CA ,CB ,CG", 62.3);
19 CE. editIC ("A ,37", "chi2", 175.4) ;
20
21 // set the backbone of A 37 in beta conformation
22 CE. editIC ("A ,37", "phi", -99.8);
23 CE. editIC ("A ,37", "psi", 122.2) ;
24
25 // even set entire stretches in helical conformation
26 // a-helix defines phi , psi , bond angles
27 CE. editIC ("A,20-A ,30", "a-helix");
28
29 // the changes are applied at once
30 CE. applyConformation ();
31
32 sys. writePdb (" edited .pdb");
33 }

Storing multiple conformations and switch between
them

An extremely useful feature of MSL is the ability of storing multiple coordi-
nates for each atom. This is done internally within the Atom by representing
the coordinates as an array of CartesianPoint objects. Only one of the
coordinates is active at any given time. This information is stored by a
pointer, and the active coordinates can be readily switched by readdressing
it. This feature allows for storing different conformations of parts or the
entirety of a macromolecule. The following example demonstrates how to
switch between sets of coordinates at the level of an Atom.

1 # include " AtomContainer .h"
2
3 int main () {
4 AtomContainer molAtoms ;



184

5 molAtoms . readPdb ("input.pdb");
6
7 // add two alt conformation to the first atom , A,1,N
8 molAtoms [0]. addAltConformation (4.214 , -6.573 , 2.123) ;
9 molAtoms [0]. addAltConformation (4.743 ,3.123 , -1.986);

10
11 cout << molAtoms [0]. getNumberOfAltConformations ()
12 << " alternate conformations exist" << endl;
13 cout << "The active conformation ’s index is "
14 << molAtoms [0]. getActiveConformation () << endl;
15 cout << molAtoms [0] << endl; // print the atom
16 molAtoms [0]. setActiveConformation (2);
17 cout << "The active conformation is now " <<
18 molAtoms [0]. getActiveConformation () << endl;
19 cout << molAtoms [0] << endl;
20 return 0;
21 }

Output (note the change of conformation number with the brackets):
The atom has 3 conformations

The active conformation’s index is 0
N ALA 1 A [ 3.756 -6.987 2.456] (conf 1/ 3) +
The active conformation’s index is now 2
N ALA 1 A [ 4.743 3.123 -1.986] (conf 3/ 3) +

Using a rotamer library

The multiple coordinates provide a mechanism for storing alternate confor-
mations of side chains (or rotamers). The rotamers can be loaded on the
molecule using the SystemRotamerLoader object, which reads a rotamer
library file (line 13). The setActiveRotamer function of the System (line 19)
can switch between rotamers by changing the active coordinates of all side
chain atoms at once.
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1 # include " System .h"
2 # include " PDBTopologyBuilder .h"
3 # include " SystemRotamerLoader .h"
4
5 int main () {
6
7 // create an empty System
8 System sys;
9 sys. readPdb ("input.pdb");

10
11 // SystemRotamerLoader loads 10 rotamers on LEU A 37
12 // which are stored as alternative atom conformations
13 SystemRotamerLoader rotLoader (sys ," rotlib .txt");
14 rotLoader . loadRotamers ("A ,37", "LEU", 10);
15
16 // LEU at A 37 is set in all possible rotamers
17 for(int i=0; i<sys. getTotalNumberOfRotamers ("A ,37");
18 i++) {
19 sys. setActiveRotamer ("A ,37", i);
20 // do something ..
21 }
22 }

The rotamer library is stored in a text file with the format of the energy-
based conformer library [?], which is distributed with MSL. Support for
other formats could be easily implemented. The following example shows
the format of a rotamer library file, which includes the residue name (RESI),
the mobile atoms (MOBI), the definition of the degrees of freedom (DEFI),
and the first three rotamers of Dunbrack’s backbone independent library[?]
for Leu (CONF).

1 RESI LEU
2 MOBI CB CG CD1 CD2
3 DEFI N CA CB CG
4 DEFI CA CB CG CD1
5 CONF 58.7 80.7
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6 CONF 71.8 164.6
7 CONF 58.2 -73.6
8 ..

The file format can also include variable bond angles and bond lengths
(DEFI records with two and three atoms, respectively), which is necessary
for the support of a conformer library [???].

Temporarily storing coordinates using named buffers

In addition to the alternative coordinates mechanism, MSL supports a second
distinct mechanism for storing multiple coordinates, which is essentially a
“clipboard” that enables a programmer to save the coordinate, even sets of
multiple alternative coordinates, in association with a string label. The label
can be used later to restore the saved coordinates, replacing the current
coordinates. This is useful, for example, for saving an initial state to return
to after a number of moves or to restore a state if a move happen to be
rejected. The next example shows how different sets of coordinates can be
saved and reapplied.

1 # include " AtomContainer .h"
2 # include " Transforms .h"
3
4 int main () {
5 AtomContainer molAtoms ;
6 molAtoms . readPdb ("input.pdb");
7 // save the original coordinates to a buffer
8 molAtoms . saveCoor (" original ");
9

10 // move the atoms somewhere else and
11 // save the new coordinates to another buffer
12 Transforms tr;
13 tr. translate ( molAtoms . getAtomPointers (),
14 CartesianPoint (3.7 , 4.5, -2.1));
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15 molAtoms . saveCoor (" translated ");
16
17 // restore the desired coordinates
18 molAtoms . applySavedCoor (" original ");
19 molAtoms . applySavedCoor (" translated ");
20
21 // remove all saved coordinates
22 molAtoms . clearSavedCoor ();
23 return 0;
24 }

Making mutations: alternative amino acid types at
the same position

MSL supports protein engineering applications, and thus allows easy substi-
tutions of amino acid types at a position. Analogously to how an Atom can
store and switch between alternative coordinates, a Position can store and
switch between multiple Residue objects, each corresponding to a different
amino acid type (see Figure 7.3). Each amino acid type can have multiple
rotamers (as shown above), therefore a System can simultaneously contain
the entire universe of side chain conformations and sequence combinations
that is the base of a protein design problem. In the following simple example,
we show how to switch amino acid identity after reading a PDB file. The
example below uses the PDBTopologyBuilder to obtain the new amino acid
type from a topology file (in this case, Lys). Lys and Phe coexist at position
37, only one of them being active at any given time, and line 26 shows how
to switch back to the original amino acid type.

1 # include " System .h"
2 # include " PDBTopologyBuilder .h"
3 # include " SystemRotamerLoader .h"
4
5 int main () {
6
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7 // read a PDB with the PDBTopologyBuilder
8 System sys;
9 sys. readPdb ("input.pdb");

10
11 // Add LYS at A 37 using PDBTopologyBuilder
12 // read a topology file
13 PDBTopologyBuilder PTB(sys , " top_pdb .inp");
14 PTB. addIdentity ("A ,37", "LYS"); // add the LYS
15 sys. setIdentity ("A ,37", "LYS"); // make LYS active
16
17 // The LYS was in a default orientation .
18 // Let ’s load the first rotamer from a rotamer
19 // library (no promise it won ’t clash)
20 SystemRotamerLoader rotLoader (sys , " rotlib .txt");
21 rotLoader . loadRotamers ("A ,37", "LYS", 1);
22
23 sys. writePdb (" mutated_to_LYS .pdb");
24
25 // revert to the original PHE
26 sys. setIdentity ("A ,37", "PHE");
27 sys. writePdb (" original .pdb");
28 }

7.3 Energy Calculations

Energy functions

MSL supports a number of energy functions. The code base is designed
to provide flexibility in calculating energies and to be easily expanded to
include new functions. The energetics in MSL are calculated by an object
called the EnergySet. As illustrated in Figure 7.4, the EnergySet contains
an internal hash (stl::map) of all possible energy terms (such as covalent
bond energy or van der Waals energy). Each hash element contains an array
(stl::vector) of pointers to Interaction objects. Each Interaction represents
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Figure 7.3: Multiple alternative coordinates and multiple alternative identities.
A unique and distinctive feature of MSL is the ability of storing multiple alternative
coordinates in an Atom and multiple alternative amino acid identities in a Position.
Panels (a) and (b) illustrate a case in which a Phe side chain has three alternative
conformations, one of which active (green) and two inactive (gray). The internal
redirection of a pointer switches the active conformation of the side chain’s atoms
from 0 to 1, changing rotamer. Panels (c) and (d) show a case in which a Position
contains two alternative residues or amino acid identities. The redirection of
a pointer switches the active amino acid identity from Phe to Lys. These two
features, multiple coordinates and multiple identities, can be combined, and a
Position can load multiple amino acid types in multiple conformations, a feature
that greatly eases the development of protein design code.
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for example a bond or a van der Waals interaction between two specific
atoms. The Interaction contains all that is necessary to calculate the energy:
the pointers to the atoms involved, the parameters (i.e., for bond energy a
spring constant and an equilibrium distance), and a mathematical function
to calculate the energy. To calculate the total energy of a System, all
interactions of each type are summed. It is also possible to calculate the
interaction energies of specific subsets of atoms by using selections.

In the next example, we demonstrate the support for the CHARMM
basic force field (vdw, coulomb, bond, angle, Urey-Bradley, dihedral, and
improper terms). To compute energetics with the CHARMM force field, the
System must be created using the CharmmSystemBuilder. The Charmm-
SystemBuilder reads the information necessary to build the molecule and
populate the EnergySet from standard CHARMM topology and parameter
files (line 10-11). In the example, the coordinates are read from a PDB file
(note: the residue and atom names must be in CHARMM format, which is
similar to the PDB convention but differs in the naming scheme of some
atoms).

1 # include " System .h"
2 # include " CharmmSystemBuilder .h"
3 # include " AtomSelection .h"
4
5 int main () {
6
7 System sys;
8 // build the system
9 // with standard CHARMM 22 topology and parameters

10 CharmmSystemBuilder CSB(sys , " top_all22_prot .inp",
11 " par_all22_prot .inp");
12 // note , the PDB must follow CHARMM atom names
13 CSB. buildSystemFromPDB ("input.pdb");
14
15 // verify that all atoms have been assigned
16 // coordinates using an AtomSelection
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17 AtomSelection sel(sys. getAtomPointers ());
18 // selects all atoms without coordinates
19 sel. select (" noCoordinates , HASCOOR 0");
20 if (sel. selectionSize ( " noCoordinates ") != 0) {
21 cerr >> " Missing some coordinates ! Exit" << endl;
22 exit (1); // in case of error , quit
23 }
24
25 // calculate the energies and print a summary
26 sys. calcEnergy ();
27 cout << sys. getEnergySummary ();
28 }

MSL can print a summary (line 27) that details the total energy of each
terms and the number of interactions.

Interaction Type Energy Interactions
CHARMM_ANGL 15.788323 236
CHARMM_BOND 9.362135 131
CHARMM_DIHE 25.590364 331
CHARMM_ELEC -55.028815 8279
CHARMM_IMPR 0.009295 21
CHARMM_U-BR 1.840063 120
CHARMM_VDW -16.147911 8279

Total -18.586546 17397

Table 7.1: Energy summary of a protein.

Subsets of energy terms can be turned off if desired. The following two
lines would limit the calculations to the vdW term.

1 // set all inactive
2 sys. getEnergySet () -> setAllTermsInactive ();
3
4 // turn on VDW
5 sys. getEnergySet () ->setTermActive (" CHARMM_VDW ");
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Figure 7.4: Energetics in MSL: Interaction objects and the EnergySet. MSL is
designed to allow easy addition of new energy functions (or terms). a) Energy
terms inherit a generic Interaction class. The specialized interaction class (bond,
angle, and VDW) contains pointers to the relevant atoms, all needed parameters
and the mathematical formula. b) The energy calculations in MSL are performed
by the EnergySet, which resides inside the System. The EnergySet stores the
interactions in a bidimensional container. The first dimension is a hash (stl::map)
in which a string is associated with each specific energy term (i.e., “Bond”, “Angle”,
etc.). Inside the hash is an array (std::vector) of all the interactions pertinent to a
specific term. To obtain the total energy of the System, the EnergySet iterates the
two-dimensional structure, summing up the energy of each individual interaction.
The EnergySet is filled with interactions using a Builder.
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The next example shows how to mutate a protein and then find the
minimum energy among a set of 10 possible rotamers at that position.
Instead of the total energy, in this case, we use selections to calculate the
interaction energy between “Lys,A,37” and the rest of the protein. The
two selection labels (created at lines 23-24) are passed to the calcEnergy
function to calculate the interaction energy of the subsets of atoms (line 31).

1 # include " System .h"
2 # include " CharmmSystemBuilder .h"
3 # include " SystemRotamerLoader .h"
4 # include " AtomSelection .h"
5
6 int main () {
7
8 System sys;
9 CharmmSystemBuilder CSB(sys , " top_all22_prot .inp",

10 " par_all22_prot .inp");
11 CSB. buildSystemFromPDB ("input.pdb");
12
13 // add LYS at position A 37 and make it active
14 CSB. addIdentity ("A ,37", "LYS");
15 sys. setActiveIdentity ("A ,37", "LYS");
16
17 // Load 10 rotamers on LYS
18 SystemRotamerLoader rotLoader (sys ," rotlib .txt");
19 rotLoader . loadRotamers ("A ,37", "LYS", 10);
20
21 // create two selections to calculate energies
22 AtomSelection sel(sys. getAtomPointers ());
23 sel. select ("LYS_A_37 , chain A and resi 37");
24 sel. select ("allProt , all");
25
26 // find the best rotamer of LYS A 37
27 uint minRot = 0; double minE = 0;
28 for (uint i=0; i <10; i++) {
29 // set in the i-th rotamer
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30 sys. setActiveRotamer ("A ,37", i);
31 double E = sys. calcEnergy (" LYS_A_37 "," allProt ");
32 if (i == 0 || E < minE) {
33 minRot = i; minE = E;
34 }
35 }
36 cout << "The lowest energy state is rotamer
37 index \# " << minRot << endl;
38 }

MSL implements the CHARMM force field, including the required 1-4 electro-
static rescaling (e14fac), fixed and distance-dependent dielectric constants,
and distance cutoffs, with a switching function to bring the energies smoothly
to zero. The energies calculated in MSL reproduce those obtained with
CHARMM [Brooks et al. (1983)], as tested. In addition, MSL implements
LazaridisâŁ™ EFF1 implicit solvation models [?] (the membrane solvation
model IMM1[? is currently under development), a hydrogen bond term
derived from SCWRL4 [Krivov et al. (2009)] the EZ membrane insertion
potential, [20] knowledge-based potentials, such as DFIRE [?] and a single-
body “baseline” term (a value associated with a single atom in a residue,
useful in protein design). Weights can also be added to rescale the energy
of each individual terms, if needed.

Adding new energy functions to MSL

MSL is geared toward the development of new methods, and it supports
the creation and integration of new energy functions. To create a new
energy function a programmer needs to code a new type of Interaction,
which contains all that is needed, the pointers to the relevant atoms and the
necessary parameters, to calculate an energy. The specialized interactions
are derived using inheritance from a virtual Interaction class. The specialized
interaction objects are added to the EnergySet as generic Interaction pointers,
and thus the EnergySet is blind to the specific nature of the interaction and



195

does not need to be modified every time a new type of energy is added. To
add a new term to the EnergySet, an external object called a “builder” (such
as the CharmmSystemBuilder or the HydrogenBondBuilder) is required. The
builder is the object that is responsible for the creation of all the individual
interactions that are pertinent for a given System. This particular strategy
supports the introduction of any new type of interaction without having to
modify the core of MSL energetics (the System and the EnergySet).

7.4 Algorithms and Tools

Side chain optimization

MSL supports a number of algorithms for the optimization of side chain
conformation that can be applied to protein modeling, docking, or protein
design tasks. The SideChainOptimizatonManager is the object in charge
of this specific task. The SideChainOptimizatonManager receives a System
that already contains positions that have either multiple rotamers and/or
multiple identities (known as variable positions). The object separates
the interactions of the EnergySet into “fixed” (involving atoms that are in
invariable positions), “self” (involving atoms from a single variable position),
and “pairwise” (involving atoms from two variable positions). From these,
it can reconstruct the total energy of any state. In the example below, the
system contains three variable positions and the energy of the state defined
by rotamers 3, 7, and 0 is calculated.

1 # include " System .h"
2 # include " CharmmSystemBuilder .h"
3 # include " SideChainOptimizationManager .h"
4
5 int main () {
6 System sys;
7 CharmmSystemBuilder CSB(sys , " top_all22_prot .inp",
8 " par_all22_prot .inp");



196

9 CSB. buildSystemFromPDB ("input.pdb");
10
11 // Add 10 rotamers to 3 positions
12 SystemRotamerLoader rotLoaded (sys ," rotlib .txt");
13 rotLoader . loadRotamers ("A ,21", "ILE", 10);
14 rotLoader . loadRotamers ("A ,23", "LEU", 10);
15 rotLoader . loadRotamers ("A ,43", "ASN", 10);
16
17 // pass the system as a pointer
18 SideChainOptimizationManager SCOM (& sys);
19 // this function pre - calculates all interactions
20 SCOM. calculateEnergies ();
21
22 // get the energy of a state
23 // Eg: A21: 4th rotamer , A23 8th rot., etc
24 vector <uint > state (3, 0);
25 state [0] = 3; state [1] = 7; state [2] = 0;
26 double E = SCOM. getStateEnergy (state);
27
28 // print a summary of the state
29 cout << SCOM. getSummary (state) << endl;
30 }

The state is the index of the desired rotamer at each position. If there are
multiple identities at one Position, the state would range to include the
sum of all the rotamers for each identity. For example, if a Position has
two identities (Leu and Ile) with 10 rotamers each, the state could be any
number from 0 to 19 where 0-9 corresponds to the 10 Leu rotamers and
10-19 corresponds to the 10 Ile rotamers.

The SideChainOptimizationManager supports a number of side chain
optimization algorithms that search for the global energy minimum in side
chain conformational space. The current implementation includes dead end
elimination (DEE)[?] (Goldstein single and pair), simulated annealing Monte
Carlo (MC), MC over self-consistent mean field (SCMF),[?] Quench,[?] and
a linear programming formulation [?] (note, at the time of writing, Quench
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and LinearProgramming are present as a stand-alone implementation, but
they are currently being folded into the SideChainOptimizationManager).
The algorithms can be run individually or in sequence. The next example
shows how to run DEE followed by SCMF/MC search.

1 int main () {
2 //..
3 // Create System and add rotamers and
4 // alternate identities as in
5 // lines 1-15 of the previous example
6
7 SideChainOptimizationManager SCOM(sys);
8 SCOM. calculateEnergies ();
9 // run Dead End Elimination

10 SCOM. setRunDEE (true);
11 // run SCMF/MC on the remaining rotamers
12 SCOM. setRunSCMFBiasedMC (true);
13 SCOM. runOptimizer ();
14
15 // get the result
16 vector <uint > bestState = SCOM. getMCfinalState ();
17
18 // print the energy summary
19 cout << SCOM. getSummary ( bestState );
20
21 // set the system in the final state
22 sys. setActiveRotamers ( bestState );
23 sys. writePdb ("best.pdb");
24 }

Some of the above algorithms require precomputation of all pairwise energies
between all rotamers at the variable positions (e.g., DEE), whereas others
are amenable to computation of the energies as they are needed (e.g., MC ).
The SideChainOptimizationManager supports both options.
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Energy Minimization

MSL can improve the energy of a structure by relaxing it to the nearest local
minimum, a procedure called energy minimization. MSL takes advantages of
the multidimensional minimization procedures included in the GNU Scientific
Library (GSL)[?]. For those energy terms that have been implemented with
their Cartesian partial derivatives (such as all CHARMM force field terms),
MSL can minimize using faster algorithms such as Steepest Descent and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS), a quasi-Newton method. When
gradient information is not available, minimization can be performed using
a Simplex Minimizer. The GSLMinimizer can perform constrained as well
as unconstrained energy minimization. Performing minimization in MSL is
extremely simple:

1 # include " GSLMinimizer .h"
2 # include " CharmmSystemBuilder .h"
3
4 int main (){
5 // Read input.pdb and build a system
6 System sys;
7 CharmmSystemBuilder CSB(sys , " top_all22_prot .inp",
8 " par_all22_prot .inp");
9 CSB. buildSystemFromPDB ("input.pdb"));

10
11
12 GSLMinimizer min(sys); // Initialize the minimizer
13
14 // OPTIONS : One can change the default algorithm
15 // min. setMinimizeAlgorithm ( GSLMinimizer :: BFGS);
16
17 // can also fix some atoms with a selection string
18 // min. setFixedAtoms (" name N+C+CA+O+HN");
19
20 // Can optionally perform constrained minimization
21 // atoms with 10 kcal /( mol*$\AA ^{2}$) force constant
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22 // min. setContrainForce (10.0) ;
23 // only the backbone
24 // min. setContrainForce (10.0 ," name N+C+CA+O+HN");
25
26 // Print energy summary before the minimization
27 sys. printEnergySummary ();
28 // Perform the minimization
29 min. minimize ();
30 // Print the energy summary after
31 sys. printEnergySummary ();
32
33 sys. writePdb (" output .pdb");
34 }

Sequence Regular Expressions

A common feature in software scripting languages is regular expressions,
which can describe complex string patterns. A very simple example of using
regular expressions to match multiple strings is the regular expression string
“[hc]at,” which matches both “hat” and “cat”. Regular expressions have been
used in many bioinformatic algorithms, for instance to match complicated
protein sequence motifs [?]. A useful analysis task is to find pieces of protein
structure that correspond to an interesting and/or functional sequence motif.
For example, a common folding motif in membrane proteins is three amino
acids of any type bracketed by two glycines (the GxxxG motif[?). It may be
interesting to find all five amino acid fragments in a database membrane
protein structures that fit the GxxxG motif. The following example shows
how MSL can accomplish this task by using MSL objects built using BOOST
functionalities.

First a membrane protein structure file is read in. A single chain is
extracted from the System (line 4). A regular expression object and search
string are then created (line 10). Next, the GxxxG pattern of “G.3G” is
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searched against the Chain object (line 15). A list of matching residue ranges
is returned in “matchingResidueIndicies”. Lastly, each match is printed out.

1 System sys;
2 sys. readPdb (" MembraneProtein .pdb");
3
4 Chain &chA = sys. getChain ("A");
5
6 // Regular Expression Object
7 RegEx re;
8
9 // Look for GxxxG

10 string regex = "G.{3}G";
11
12 // a sequence search to return the min and
13 // max indices within the Chain object
14 vector <pair <int ,int > > matchingResidueIndices =
15 re. getResidueRanges (ch ,regex);
16
17 // Loop over each match.
18 for (uint m = 0;m < matchingResidueIndices .size ();m++){
19 // Loop over each residue for this match
20 int match = 1;
21 for (uint r = matchingResidueIndices [m]. first;
22 r = matchingResidueIndices [m]. second ;r++){
23
24 // Get the residue
25 Residue &res = ch. getResidue (r);
26
27 // .. print out matched residues ..
28 cout << "MATCH("<< match <<"): RESIDUE :
29 "<<res. toString () <<endl;
30 }
31 }
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Modeling Backbone Motion

Integrating backbone motion into protein design algorithms has become a
major push in the field. In MSL, we have implemented three algorithms for
modeling backbone motion between fixed Ca positions: cyclic coordinate
descent (CCD)[?], Backrub,[?] and PDB fragment insertion[?] (Figure 7.5).
These algorithms can also be used to insert new pieces of protein structure
between two fixed Ca positions. These algorithms are Ca based, but all
atoms versions can be implemented. The CCD algorithm sets the backbone
conformation of a single residue to a random value, breaking the polymer
chain. A set of dihedral rotations around the preceding Ca-Ca virtual
bonds are discovered that both close the broken chain and produce a new
conformation for the peptide. The Backrub algorithm works in steps that
take three consecutive amino acids and rotates around their Ca-Ca virtual
bonds to produce new backbone conformations. The PDB fragment method
searches a structural database for stretches of amino acids that fit the
geometry of the first and last two residues, but the residues in between are
unique conformations. The next examples demonstrate these algorithms.

1 # include "CCD.h"
2 âŁ¦
3 // Read C-alpha only pdb file into a System object
4 System sys;
5 sys. readPdb (" caOnly .pdb");
6
7 CCD sampleCCD ; // CCD algorithm object
8
9 // Do local sampling inside CCD object

10 // 10 models , max 10 degrees
11 sampleCCD . localSample (sys. getAtomPointers () ,10 ,10);
12
13 // System with alternative conformations
14 System newSys ( sampleCCD . getAtomPointers ());
15



202

16 // Write out all the models NMR -style
17 newSys . writePdb (" ccdEnsemble .pdb",true);

Next, we show how one can use the Backrub algorithm:

1 // Read pdb file into a System object
2 System sys;
3 sys. readPdb (" example .pdb");
4
5 // A BackRub object
6 BackRub br;
7
8 // Do local sampling inside BackRub object
9 // Start , end residues and # of samples

10 br. localSample (sys. getChain (0) ,1,7,10);
11
12 System newSys (br. getAtomPointers ());
13
14 newSys . writePdb (" brEnsemble .pdb",true);

Next, we show how one can use the PDB fragment insertion algorithm.
Although the previous two examples use transformation operations to move
the backbone atoms, this algorithm searches across a database of structures
to find a suitable fragment that closes the gap between two positions (called
“stem” residues). For a demonstration on how to create a database of
structures, we refer to the tutorial section on the MSL website.

1 // Read pdb file into a System object
2 System sys;
3 sys. readPdb (" example .pdb");
4
5 // Stems are kept fixed
6 // search for segment in - between
7 vector <string > stems;
8 stems. push_back ("A,1");
9 stems. push_back ("A,2");

10 stems. push_back ("A,7");
11 stems. push_back ("A,8");
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12
13 // the structure database
14 PDBFragments fragDB ("./ tables / fragdb100 .mac.db");
15
16 // Load the fragment database
17 fragDB . loadFragmentDatabase ();
18
19 // Do local sampling inside PDBFragment object
20 int numMatchingFrags =
21 fragDB . searchForMatchingFragments (sys ,stems);
22
23 if ( numMatchingFrags > 0){
24 System newSys ( fragDB . getAtomPointers ());
25 ewSys. writePdb (" pdbEnsemble .pdb",true);
26 }

7.5 Other Useful Modeling Tools and
Procedures

Filling in missing backbone coordinates (backbone
building from quadrilaterals)

In the following example, we illustrate a geometric algorithm implemented
in MSL. The backbone building from quadrilaterals (BBQ) algorithm, de-
veloped by Gront et al.,[?] allows for the insertion of all backbone atoms
into a structure when a Cα only trace is available, as in the CCD and PDB
fragment insertion methods.

1 # include " BBQTable .h"
2 # include " System .h"
3
4 int main () {
5 System sys;
6 // Read a pdb file that only includes C-alpha atoms.
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7 sys. readPdb (" caOnly .pdb");
8 BBQTable bbq(" bbq_table .dat");
9

10 // fill the missing backbone atoms for each chain
11 for(int chainNum = 0; chainNum < sys. chainSize ();
12 ++ chainNum ) {
13 bbq. fillInMissingBBAtoms (sys. getChain ( chainNum ));
14 }
15
16 // Write out a pdb with all of the backbone atoms.
17 // Note: Due to the way the BBQ algorithm works , no
18 // backbone atoms will be generated for the first
19 // and last residues in a chain.
20 sys. writePdb (" output .pdb");
21 }

Molecular alignments

A second example of a geometric algorithm is molecular alignment. MSL can
be used to align two molecules and compute a RMSD. Alignments are based
on quaternion math, supported by the transforms object. The following
example demonstrates the alignment of two homologous proteins based on
their CA atoms.

1 # include " AtomContainer .h"
2 # include " Transforms .h"
3 # include " AtomSelection .h"
4
5 int main () {
6 AtomContainer mol1;
7 mol1. readPdb (" input1 .pdb"); // read the first molecule
8 AtomContainer mol2;
9 mol2. readPdb (" input2 .pdb"); // read the second molecule

10
11 AtomSelection sel1(mol1. getAtomPointers ());
12 // get the CAs of molecule 1
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Figure 7.5: Backbone motions implemented in MSL. The internal C-alpha
atoms of an eight-residue peptide were sampled using three different algorithms
implemented in MSL. The CCD algorithm breaks the peptide chain, then discovers
a set of rotations that can close the loop (this algorithm holds the first and last
C-alpha atom fixed and are not shown in the figure). The Backrub algorithm was
developed to recapitulate the backbone movements found in high-resolution crystal
structures and uses rotations around virtual C-alpha-C-alpha bonds. The PDB
fragment method searches across a structural database and finds all fragments
with the same geometry as found between the first two and last two residues of
the original eight-residue peptide.

13 AtomPointerVector CA1 = sel1. select ("name CA");
14
15 AtomSelection sel2(mol2. getAtomPointers ());
16 // get the CAs of molecule 2
17 AtomPointerVector CA2 = sel2. select ("name CA");
18
19 if (CA1.size () != CA2.size ()) {
20 cerr << "ERROR: # CA should be identical !" << endl;
21 exit (1);
22 }
23 cout << "Pre - alignment RMSD: " <<
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24 CA1.rmsd(CA2) << endl;
25
26 Transforms tr;
27 // move molecule 2 based on the CA1/CA2 alignment
28 tr. rmsdAlingment (CA2 , CA1 , mol2. getAtomPointers ());
29
30 cout << "Post - alignment RMSD: " <<
31 CA1.rmsd(CA2) << endl;
32
33 mol2. writePdb (" input2_aligned .pdb");
34 return 0;
35 }

Solvent accessible surface area

The calculation of a solvent accessible surface area (SASA) is an important
molecular feature that is used for analysis and modeling purposes. The
SasaCalculator can use default element-based radii or atom-specific radii if
provided (such as the CHARMM atomic radii, e.g., when the molecule is
setup with the CharmmSystemBuilder).

1 # include " AtomContainer .h"
2 # include " SasaCalculator .h"
3
4 int main () {
5 AtomContainer molAtoms ;
6 molAtoms . readPdb ("input.pdb");
7
8 SasaCalculator SC( molAtoms . getAtomPointers ());
9 SC. calcSasa ();

10
11 // print a table of SASA by atom
12 SC. printSasaTable ();
13
14 // print a table of SASA by residues
15 SC. printResidueSasaTable ();
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16 return 0;
17 }

7.6 Applications Distributed with MSL

Side Chain Structure Prediction and Backbone
Motions

MSL is primarily a library of tools developed for allowing the implementation
of new molecular modeling methods.

However, a number of programs are also distributed in the source repos-
itory and more will likely be contributed in the future. In the following
section, we briefly demonstrate the performance of two of such programs,
because of their general utility and because their source could be used to
see many of the features previously described “in action” and as a template
to create new applications. The program repackSideChains is a simple side
chain conformation prediction program. It takes a PDB file, strips out all
existing side chains (if they are present), and predicts their conformation
using side chain optimization. Under the hood, the program uses a series of
side chain optimization algorithms previously described. Run with default
options, it starts by performing DEE [?] followed by a round of SCMF [?] on
the rotamers that were not eliminated, and finally a MC search starting from
the most probable SCFM rotamers (the choice of algorithms is configurable
by command line arguments). We applied the program to 560 proteins
backbones obtained from the structural database. The side chains were
placed using a set of energy functions that included CHARMM22 bonded
terms and van der Waals function, and the hydrogen bond function from
SCWRL4 [Krivov et al. (2009)], using the energy-based library[?] at the
85% level (1231 conformers). The program recovered the crystallographic
side chain conformation of nearly 80% of all buried side chain (max 25%
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Figure 7.6: Performance of the energy-based library in total protein repacks.
Final energy after optimization of all side chains in 560 proteins, for the energy-
based library. For easier comparison, energies are plotted after subtracting the
energy of the minimized crystal structure (“crystal energy”). The dashed line sep-
arates the proteins that score better than the crystal energy (percentages indicated),
a convenient reference under the assumption that in most cases it represents a
good target for an optimization.

SASA, χ1 + χ2 recovery, with a tolerance threshold of 40◦), ranging from
about 55% (Ser) to 90% (Phe, Tyr, and Val). The total hydrogen bond
recovery in the same set of calculations is 60% (all side chains).

Figure 7.6 shows the distribution of the final energy of the repacked
proteins compared with the energy of the minimized crystal structures,
which is a reasonable reference. The program produces structures that are
lower than the energy of the minimized crystal structure in 72% of the cases.
The average time for performing side chain minimization was around one
minute for a 100 amino acid protein, and 5-8 minutes for a 300 amino acid
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protein. It should be noted that the program could also be adjusted to
use different combination of energy function or rotamer/conformer libraries.
The different terms of the energy functions can also be relatively weighted
as desired.

The side chain prediction application repackSideChains offers an opportu-
nity to compare the performance of some of MSL’s capabilities against other
modeling software. Side chain conformation predictions were performed in
parallel on a set of 34 medium size proteins (up to 250 amino acids) with
repackSideChains and three commonly used side chain prediction programs,
Rosetta,[?] SCWRL,[Krivov et al. (2009)] and Jackal,[?] and the resulting χ
angle recoveries and average execution times are shown in Figure 7.7. The
levels of recovery are similar among the four programs, with Rosetta having
an edge above the other programs. In term of execution time, SCWRL is
a clear winner, while the time of the three other programs is comparable.
It should be remarked here that MSL’s repackSideChains is a relatively
simple program that has not been extensively optimized to maximize side
chain recovery. The program is provided as a utility and as an example for
creating programs that incorporate similar functionalities. Nevertheless, its
performance is in line with the average in terms of speed and is close in
terms of recovery to the other benchmarks.

The availability of a variety of modeling algorithms in MSL enables the
solution of complex problems. Here, we demonstrate the utility of one of the
flexible backbone algorithms presented above (the Backrub algorithm[?]). We
selected one of the structures in which core amino acids were not predicted
correctly by repackSideChains (Fig. 7.8a, PDB code 1YN3). The static
backbone structure has been implicated as a primary source of error in side
chain repacking, and thus prediction can be ameliorated by exploration of
near-native models [?]. We applied the program backrubPdb to generate an
ensemble of near-native protein structures of 1YN3. Each of these near-native
models was subjected to side chain optimization through repackSideChains,
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Figure 7.7: Enhanced performance of rotamer recovery using flexible backbone
modeling. In panel (a),the original backbone is shown in orange ribbons. The side
chain conformations in the crystal structure of 1YN3 are shown in green. Side
chain prediction with the repackSideChains program produced the conformations
of four core residues displayed in magenta. In the model, the χ1 of Y217 assumes
a g- conformation instead of the g+ conformation that is observed in the crystal
structure. Concurrently, there is also a rearrangement of other three nearby
positions to non-native rotamers. After the backbone has been locally relaxed with
the Backrub algorithm [panel (b), in blue], the lowest energy model recovers the
native conformation.

and the results were analyzed. A slight (<0.5 Å ) backbone shift resulted in
a structure that was lower in energy than the fixed-backbone model and had
correctly placed side chains, as illustrated in Figure 7.8b. The generation of
an ensemble of backbones takes only few seconds. The repackSideChains
and backrubPdb are separate standalone programs; however, it would be
straight forward to include both backbone flexibility and side chain repacking
capabilities into a single program. Tutorials on how to run the two programs
are available on the MSL web site.
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Figure 7.8: Comparison of the performance of MSL’s repackSideChains with
other side chain prediction programs. a) Side chain recovery performance. The
figure plots the overall χ1 + χ2 recovery of all side chains in a set of 34 proteins of
size up to 250 amino acids. Only the buried side chains were considered (max 25%
SASA). A side chain was considered “recovered” correctly if both χ1 and χ2 were
predicted with a tolerance threshold of ±20◦. b) Execution time. The histogram
shows the average execution time of the 33 side chain prediction runs with the
four programs. The error bar represents the standard deviation. Rosetta is the
program with the best overall recovery in the test, whereas SCWRL is the fastest
one. The performance of MSL program repackSideChains is in line with the other
programs with respect to speed and close to the benchmarks in terms of recovery.
It should be noted that repackSideChains is distributed as a utility and example
program and it has not been extensively refined for maximum performance.
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Version Control

MSL is currently in an advanced beta state and rapidly evolving. The
library is used for production work, but new features are being implemented
on a regular basis. The API of most core objects is stable, although it
can be occasionally revised. The codebase is kept under version control on
the opensource repository SourceForge (http://mslib.svn.sourceforge.net).
New versions are tagged with four-level number identifiers. At the time
of writing, the current version is 1.1.2.9. The first number is the version
number, currently one as the software is considered in beta. The second
number is incremented with every update that significantly affects the API.
The third version number is for significant changes that do not affect the API
or do so only in a minor way (such as the addition of a new object). The last
number is for small changes and bug fixes. All old versions are available for
download from the “tags” subdirectory on the repository. By tagging MSL
versions, users can put exact source code versions in publications allowing for
reproduction of the result. The entire development history of MSL since the
source was opened in 2009 is commented in the file src/release.h. The other
function of the release.h file is to define a global variable “MSLVERSION”,
which is set to the current version number. This variable enables the
programmer to encode a mechanism for tracking what specific MSL version
was used to compile a program. In the following example, when the -v
argument is provided, the programs returns the MSL version.

1 # include " release .h"
2
3 int main(int argc , char *argv []) {
4 if (argc > 1 and argv [1] == "-v") {
5 // the program was called with the -v option :
6 // print the MSL version number
7 cout << "MSL version " << MSLVERSION << endl;
8 }
9 // rest of the code here
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10 return 0;
11 }

7.7 Conclusions

MSL is a large, fully featured code base that includes over 130 objects and
more than 100,000 lines of code. We have discussed a number of simple
examples that demonstrate how to perform complex operations with just a
few lines of code. MSL supports some unique features, such as multiple atom
coordinates and multiple residue identities, a number of energy functions
that are readily expandable, and other tools and algorithms that will enable
rapid implementation of a large variety of molecular modeling procedures.
Other MSL features that have not been presented here include coiled-coil
generation, symmetric protein design, synthetic fusions of two proteins, both
PyMOL integration and PyMOL script generation, integration with the
statistical package R[?] for producing high quality plots, and use of its
statistical procedures. MSL is less specialized and more comprehensive than
other open-source packages that have been designed with a specific task in
mind (e.g., the EGAD package[?]). Because it is modular, expandable, and
largely agnostic to file formats, it can be applied to any variety of analysis
and modeling problems and macromolecular types, including nucleic acids,
sugars, or small molecules.

In our opinion, the most important feature of the software library is
not any of the numerous methods that are currently implemented, but
the fact that it merges all these capabilities together in a single platform.
Most of the methods in MSL are already individually present in other
programs. However, because they are integrated into a single package, they
can be easily adopted by others, improved on, and mixed to create new
functionalities. Therefore, any new method contributed to the MSL code
base will be immediately available not only to end users but also to the
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entire community of developers to build on it. We call for other interested
developers to join the open-source project.

Personal Contributions

MSL has been an integral part of my research and this section is an attempt
to briefly describe my specific contributions to MSL.

Energetics in MSL is implemented using the potential functions from the
CHARMM22 [Brooks et al. (1983)] force field and the hydrogen bonding po-
tential from the SCWRL4 program [Krivov et al. (2009)]. I contributed the
initial implementation of these energy functions as a hierarchy of Interactions
depicted in Figure 7.4. The CharmmSystemBuilder and HydrogenBond-
Builder which create the list of Interactions for a given molecule were also
my contributions.

Side chain modeling in MSL is facilitated by the SideChainOptimiza-
tionManager and associated classes. I have made significant enhancements
to this class including the addition of the greedy rotamer trials algorithm. I
have also contributed to the RotamerLibrary, and SystemRotamerLoader
which are used to manipulate side chain libraries in order to facilitate the
creation of the EBL. I have also contributed a number of applications such
as the createEnergyTable, createEBL which enable the creation of the cus-
tomizable energy-based libraries. My repackSideChains and getChiRecovery
programs, also distributed with MSL enable the use and evaluation of side
chain optimization protocols.

Molecular surface area and other utilities have also been my con-
tributions to the MSL. Molecular surface area calculations are important
in protein design and structure prediction and can be calculated using the
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SasaCalculator in MSL. I have also added the FormatConverter and which
enables the interconversion of molecular data across multiple formats. I
have also contributed several other enhancements and bug fixes during the
course of my research which have become integral components of MSL.
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a supporting information for ebl

A.1 Calculation of the
conformer/environment interactions
and creation of the energy tables

The energy data used to derive the energy-based library in Chapter 2 was
collected as follows. For each amino acid type, the native side chain of each
of the M environments was remodeled as each one of the N conformers and
their interaction energy was calculated, producing a matrix of NxM energies.
The side chain reconstruction was performed from internal coordinates using
the distance, the angle and the dihedral angle relationships relative to three
preceding atoms (see Figures A.1 and A.2).

1 CartesianPoint CartesianGeometry :: buildRadians (const
CartesianPoint & _distAtom , const CartesianPoint &
_angleAtom , const CartesianPoint & _dihedralAtom ,

2 const double & _distance , const double & _angle , const
double & _dihedral ) {

3 /* **************************************************
4 * This function sets the coordinates of a cartesian
5 * point A based on:
6 * - the position of atoms B C D
7 * - the distance of A from B
8 * - the angle A-B-C
9 * - the dihedral A-B-C-D

10 *
11 * A
12 * \
13 * B--C
14 * \
15 * D
16 *
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Figure A.1: Building from internal coordinates. C++ code of the building
function buildRadians from the object CartesianGeometry.cpp in MSL [Kulp et al.
(2012)]. This code is used to build the conformers from the internal coordinates
defined in the library file (Figure A.2). The example in the picture conceptually
illustrates how the coordinates of atom A are derived relatively to the position of
atoms B, C and D. The AB distance d puts the atom A on a sphere s centered
around B. The ABC angle α restricts the atoms to a circle c. Finally, the ABCD
dihedral ω sets atom A to point p. The MSL code is freely available for download
at http://msl-libraries.org.
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17 * Angles are in RADIANS
18 *
19 * Arguments :
20 * returned CartesianPoint = atom A
21 * _distAtom = atom B
22 * _angleAtom = atom C
23 * _dihedralAtom = atom D
24 * _distance = A-B distance
25 * _angle = A-B-C angle
26 * _dihedral = A-B-C-D dihedral
27 *
28 * NOTE: no check points are coded but the distance and the
29 * angle should not be zero and the atoms should not
30 * be overlapping or B-C-D be a 180 angle
31 *
32 ************************************************** */
33 // unit vector from _distAtom to _angleAtom (B - C)
34 CartesianPoint uCB = ( _distAtom - _angleAtom ). getUnit ();
35 // distance from _angleAtom to _dihedralAtom (C - D)
36 CartesianPoint dDC = _angleAtom - _dihedralAtom ;
37 double angle2 = M_PI - _angle ;
38 double dihe2 = M_PI + _dihedral ;
39 double rsin = _distance * sin( angle2 );
40 double rcos = _distance * cos( angle2 );
41 double rsinsin = rsin * sin(dihe2);
42 double rsincos = rsin * cos(dihe2);
43 /* ***************************************
44 * The following creates the resulting position by
45 * adding three orthogonal components :
46 *
47 * - Set a component in the B-C direction ...
48 * (uCB * rcos) + ...
49 *
50 * - ... add a component on the B-C-D plane (note * denotes

dot product used between two vectors ) ...
51 * ... + (dDC - (uCB * (dDC * uCB))). getUnit () *

rsincos + ...
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52 *
53 * - ... add a component orgogonal to the B-C-D plane
54 * ... + (uCB.cross(dDC)). getUnit () * rsinsin + ...
55 *
56 * - ... finally , translate the point by the position of

atom B
57 * ... + _distAtom
58 *
59 *************************************** */
60 return (uCB * rcos) + (( dDC - (uCB * (dDC * uCB))).

getUnit () * rsincos ) + (( uCB.cross(dDC)). getUnit () *
rsinsin ) + _distAtom ;

61 }

The interaction energies included the internal interactions of the side
chain (including the bonded terms) and the interactions of the side chain with
all other atoms. The energies were calculated according to the CHARMM
22 force field [MacKerell et al. (1998)] (bond, angle, urey-bradley, dihedral,
improper, van der Waals, and Coulomb electrostatics with an R-dependent
dielectric), plus an additional hydrogen bond term as described in the
program SCWRL4 [Krivov et al. (2009)]. The nonbonded interactions were
calculated with a distance dependent cutoff of 10 Å , using a switching
function (cut-on 9 Å , cut-off 10 Å ). The calculations were repeated with
the van der Waals radii rescaled to 95% and 90% of their parameter 22
size. The table of energies were computed in three different conditions:
(1) with full electrostatics and no hydrogen bonding term, (2) with a full
hydrogen bonding term and no electrostatics and, (3) with electrostatics
plus a hydrogen bonding term, both rescaled to 50%. The NxM energy
matrix was converted into an NxM boolean matrix in which a true value
indicated that an elementâŁ™s energy was below a given threshold, and
thus the environment was satisfied. Because the best energy achievable in
each environment varied substantially, an environment dependent threshold
was adopted. The threshold was calculated in the following way: first, the
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Figure A.2: File format of the conformer library. The library is distributed in
plain text file format. The file starts a library name (LIBRARY). The next section
defines the sampling levels (LEVRES: definition of the amino acids; LEVEL:
number of conformers for each amino acid in each level). The various amino
acids are defined in a section that starts with a RESI declaration, followed by a
definition of the mobile atoms (MOBI), a list of the internal coordinates (bonds,
angles, dihedral) used to define the conformers (one for each mobile atom), and
finally the list of internal coordinates of each conformers (CONF). Each mobile
atom can be placed in cartesian coodinates using the logic explained in the code
listing above. For example, the CB atom of Val is built relative to the position of
N, C and CA atoms using the CA-CB bond distance, the C-CA-CB angle and
the N-C-CA-CB dihedral (an improper dihedral, in this case). The CG1 atom is
built using the CB-CG1 distance, the CA-CB-CG angle and the N-CA-CB-CG1
dihedral (a canonical dihedral).



221

best interaction energy in the row (all conformers in the environment) was
identified. All the elements of the row were adjusted by subtracting the
best energy. The distribution of all the adjusted energy in the entire table
was plotted. As shown in Figure A.3, these distributions have a typical
peak near the best energy. This peak represents conformers that are near
the very best energy. The distance of the modal peak from the minimum
is thus indicative of the typical energy spread of conformers that fit the
environments favorably.For this reason, we chose the mode of this peak as
the threshold to be added to the best environment energy.For example, Arg
displays a peak at 7.0 kcal mol−1 from the best energy, thus the threshold
for each Arg environment was set 7.0 kcal mol−1 above the best energy for
that environment.
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Figure A.3: Distribution of conformer/environment interaction energies. The
graphs show the energy distribution of all conformers relative to the best energy in
each environment. The mode of the peaks (marked with a vertical line) was chosen
as the tolerance threshold in the conformer sorting procedure (see methods).
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Figure A.4: Effect of constrained minimization. Superimposed structure of a
crystallographic model and the model after constrained minimization. Minimiza-
tion was necessary to homogenize the bond lengths, which can be affected by the
refinement procedures, and to resolve any small clashes in poorly refined regions.
However, minimization was performed with strong harmonic constraints to prevent
distortions of the experimental structure. The average R.M.S.D. of minimized
and unminimized models is 0.052 ± 0.01Å, and all side chains retain near na-
tive conformation. In the figure a detail of the original (green) and minimized
(magenta) structure is shown as a typical example (PDB 1FBQ, RMSD 0.05Å).
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Amino acid type BBD5x SCL XCL
Arg 75 x 5 = 375 415 334
Asn 36 x 5 = 180 48 31
Asp 18 x 5 = 90 35 19
Cys 3 x 3 = 9 4 4
Gln 108 x 5 = 540 148 107
Glu 54 x 5 = 270 108 82
His-δ 36 x 5 = 180 62 23
His-ε 36 x 5 = 180 62 23
His-p 36 x 5 = 180 62 23
Ile 9 x 5 = 45 18 23
Leu 9 x 5 = 45 36 19
Lys 73 x 5 = 365 195 312
Met 27 x 5 = 135 85 71
Phe 18 x 5 = 90 55 12
Ser 3 x 9 x 3 = 81 8 7
Thr 3 x 9 x 3 = 81 5 6
Trp 36 x 5 = 180 105 18
Tyr 18 x 8 x 5 = 720 88 16
Val 3 x 3 = 9 8 4

Total 3755 1547 1134

Table A.1: Number of conformers in the benchmark libraries. The Backbone
Dependent library was expanded 5 fold (main rotamer, ± 1 standard deviation in
χ1, and ± 1 standard deviation in χ2). For amino acids that have only one χ
angle the library was expanded 3 fold (main rotamer and ± 1 standard deviation in
χ1). The dihedral relative to the hydrogen atom of hydroxyl groups of Ser and Thr
was sampled at the canonical -60◦, 180◦ and +60◦ minima, each one expanded by
±30◦ (9 total steps) in the BBD5x. The dihedral relative to the hydrogen atom of
hydroxyl groups of Tyr was sampled every 45◦ (8 steps) in the BBD5x
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Amino acid No. of conformers
Arg 5000
Asn 5000
Asp 5000
Cys 1780
Gln 5000
Glu 5000
His-δ 2906
His-ε 4221
His-p 542
Ile 5000
Leu 5000
Lys 5000
Met 5000
Phe 5000
Ser 5000
Thr 5000
Trp 5000
Tyr 5000
Val 3916

Table A.2: Number of conformers in the energy-based library
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Figure A.5: Recovery of the crystallographic side chain conformation in to-
tal protein repacks for all side chains subdivided by χ1, χ1+χ2, χ1+χ2+χ3,
χ1+χ2+χ3+χ4 recoveries. The data is the same as Fig. 2.8, which compares
only χ1+χ2 recoveries. Recoveries obtained with the EBL are compared to the
BBD5x, the SCL and the XCL. The EBL was evaluated at a sampling level com-
parable to the benchmark (EBL-lev in 2.7, see legend and main text). The height
of the bars is meant to be cumulative (in other words, χ1 recovery > χ1+χ2 >
χ1+χ2+χ3 > χ1+χ2+χ3+χ4).
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Level ARG ASN ASP CYS GLN GLU HIS-δ HIS-ε HIS-P ILE LEU LYS MET PHE SER THR TRP TYR VAL Total
60% 27 16 12 3 7 8 14 11 3 4 6 4 12 30 3 4 43 72 3 282
70% 52 28 22 4 13 18 28 20 5 7 9 7 19 48 6 7 66 126 3 488
75% 73 38 31 6 19 28 39 26 6 9 13 10 25 60 8 10 83 167 4 655
80% 102 51 43 7 27 41 52 37 9 11 17 16 33 76 13 13 111 222 5 886

82.5% 123 60 49 8 33 50 63 44 10 13 21 21 39 87 16 16 126 254 6 1039
85% 149 70 59 9 40 61 76 53 13 16 26 26 47 100 21 20 144 294 7 1231

87.5% 177 83 70 11 49 73 95 63 17 20 32 34 57 116 27 27 164 341 8 1464
90% 222 100 86 16 61 90 121 76 22 26 39 44 72 138 34 34 196 408 10 1795

92.5% 273 122 106 21 77 111 152 94 30 35 52 58 93 169 43 44 237 487 13 2217
95% 354 154 138 32 106 144 226 125 44 50 70 81 126 214 57 62 298 613 16 2910
96% 397 173 152 39 121 163 293 150 51 60 82 94 144 242 65 74 340 687 19 3346
97% 449 201 173 48 143 182 424 172 71 78 98 111 176 278 74 89 382 767 22 3938
98% 498 227 201 71 177 215 649 255 89 108 124 132 206 342 88 108 430 838 28 4786
99% 589 292 231 100 233 261 1107 569 140 165 183 184 281 428 111 152 663 1252 44 6985

Table A.3: Suggested number of rotamers at each sampling level.The table reports
the suggested number of conformers for each amino acid type at different sampling
levels. The levels have been obtained by matching the efficiency of repacking single
side chain environments. For example, the top 27 Arg conformers satisfy on
average 60% of Arg protein environments, and 589 are required to satisfy 99%
environments. The top 16 and 292 conformers of Asn provide roughly the same
chances to satisfy Asn protein environments. The conformers of His are created
separately for the three protonation states, indicated here using the following
naming convention: His-δ, protonated in ND1; His-ε, protonated in NE2; His-p,
doubly protonated, charged.
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