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Backbone dependency further improves
side chain prediction efficiency in the
Energy-based Conformer Library (bEBL)
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ABSTRACT

Side chain optimization is an integral component of many protein modeling applications. In these applications, the confor-

mational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations.

Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer

libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an inno-

vative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by

analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal

structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accom-

modate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-

independent fashion. However, it is well established that side chain conformation is strongly dependent on the local back-

bone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the

backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran

space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Com-

pared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes,

thus further improving performance with respect to the already efficient backbone-independent version of the library.
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INTRODUCTION

Side chain optimization is the process of predicting

the 3-dimensional conformation of the side chains of a

protein given the structure of its backbone. Side chain

optimization is an important component of several pro-

tein modeling applications such as homology model-

ing,1–5 structure prediction,5–7 protein design,8–11

point mutation analysis,12,13 protein and ligand dock-

ing,12,14 and structure refinement.15,16 Mechanistically,

side chain optimization is a search for the lowest energy

state among all the combinations of side chain confor-

mations for a given protein backbone. The energy of

each conformation is scored with a variety of physics-

based17,18 or knowledge-based potential functions.19

Since the conformational space of side chains is extensive

but sparsely populated, this space is generally sampled by

adopting a library of discrete conformations.

The library-based approach provides two advantages.

First, it allows the search algorithms to focus on those

regions of side chain conformational space that occur

frequently in proteins, while discarding or deprioritizing

those that are rarely encountered. In addition, the library

converts a continuous and multi-dimensional search

problem into a discretized combinatorial problem, which

reduces complexity and facilitates the application of a

number of fast, deterministic20–22 and probabilistic

algorithms23–25 for identifying the global minimum

energy conformation of the side chains.

The discrete libraries used for side chain optimization

are usually derived in one of two ways: rotamer or con-

former libraries. The rotamer libraries26–28 are compiled

using a statistical analysis of the distribution of the side

chain dihedral angles (v angles), which are the major
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determinants of side chain conformation. This approach

is based on clustering side chain conformations observed

in high-resolution structures present in the Protein Data

Bank (PDB). The clusters (rotamers) are reported as

combinations of v angles, by indicating the center of

each cluster, a measure of their deviation, and their over-

all frequency. The rotamer libraries generally do not

report bond angles and bond lengths, which are only

minor determinants of conformation. Therefore, when

rotamer libraries are applied to side chain prediction,

these variables are generally held fixed at some optimal

value.

A second approach is employing conformer libra-

ries,25,29,30 which are representative conformations

from native structures found in the PDB. These libra-

ries are created by extracting a large number of con-

formations from the structural database, which are

then reduced to a manageable subset by applying a

similarity filter, such as angular similarity25 or root

mean square deviation (RMSD).29,30 Because the

selected conformers are actual side chains found in

proteins, the conformer libraries retain the natural var-

iation of bond lengths and angles observed in proteins,

which can be beneficial.25

An important issue with both rotamer and conformer

libraries is controlling the specific granularity of the

sampling. Increasing the size of the library can improve

the outcome of side chain optimization.25,29,31–33

However, side chain optimization is a combinatorial

search and higher sampling often comes at significant

computational cost. Particularly, if the number of side

chains involved is large, or if multiple side chain optimi-

zations are required by an application, side chain opti-

mization can become a bottleneck. For example, we use

side chain optimization to develop methods for the

structural prediction of complexes of transmembrane

helices.7,13 These methods involve extensive exploration

of backbone conformational space, and the cycle of side

chain optimization required after each backbone move

represents a major cost for the procedures. Therefore, it

is important to find the level of sampling that provides

the best compromise between two conflicting require-

ments, (i) reduction of the size of the library, for com-

putational efficiency, and (ii) increase of its size, to

achieve the best possible accuracy.25,32

To address this challenge, we previously introduced

the Energy-based Library (EBL),30 an efficient conformer

library created with an energetic criterion, whose granu-

larity of sampling is easily customizable. While the previ-

ously available rotamer and conformer libraries may be

produced in different sizes,25,29,32 the EBL is provided

as a sorted list that can be truncated precisely at any

desired length, enabling much finer control of the size of

the library, down to the level of the single conformer.

In addition, the most important advantage of the EBL

is its excellent performance in side chain optimization.

Figure 1
Procedure for the creation of an Energy-based Conformer Library.
(a) Each of N conformers from a fine-grained library is built into

each one of M environments that contain the same amino acid (Trp
in the figure) in protein crystal structures. The interaction energies of

each conformer-environment pair are calculated and if the energy is
below a certain threshold, the conformer is considered a fit for the

environment (illustrated as a green check mark in the figure). (b) The

results are stored in a N 3 M boolean table, where true means that
the conformer satisfies the environment. The number of environments

satisfied by each conformer is determined (number under the table).
The conformer that satisfies the largest number of environments is the

first to be selected (black arrow). (c) The environments that were sat-
isfied by the first conformer are no longer considered, and the proce-

dure is repeated to find the conformer that would satisfy the largest

number of the remaining environments. (d) The procedure is repeated
until all conformers are ranked. Not represented: to avoid that all

environments are rapidly consumed by the procedure, at every cycle
the energy threshold that determines if an environment is satisfied is

increased and any excluded environments that would be no longer sat-
isfied at the new more stringent threshold are brought back into con-

sideration. (e) The resulting library is compiled as a ranked list, in

which every additional element complements the previous. [Color fig-
ure can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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The EBL was constructed using the same metric used in

side chain optimization—that is, energy. This new strat-

egy resulted in a conformer library that has improved

computational efficiency. We previously showed that,

compared to other commonly used state-of-the-art libra-

ries, the EBL improves modeling accuracy (lower energies

and better dihedral prediction) for a similar number of

conformers, and that the EBL requires fewer conformers

for achieving the same level of accuracy as the other

libraries.30

Although the EBL is very efficient and has important

advantages, a potential limitation is that it was developed

as a backbone-independent library, which suggests it

could be further improved. Indeed, it is well established

that side chain conformation is strongly dependent on

the local backbone geometry,34 and has been shown that

a backbone-dependent library performs significantly bet-

ter than an equivalent backbone-independent library.35

This is because small changes in u/w angles can produce

significant variations in the rotameric distribution even

within regions with the same secondary structure classifi-

cation (helix, sheet).28,36,37 In addition, the local varia-

tions of backbone conformation also influence the

average value of v angles (to relax strained interactions

between the side chain and the backbone),35 and these

variations should ideally be captured by a side chain con-

former library.

An important hurdle for the creation of a backbone-

dependent version of the EBL was obtaining sufficient

structural data. The EBL was derived by remodeling indi-

vidual side chains within the fixed context of protein

crystal structures and evaluating the energetic interac-

tions between large sets of natural protein environments

and conformers (Fig. 1). The resulting data-set of con-

former/environment interactions was used to sort the

conformers by their propensity to fit (energetically) into

natural proteins, thereby producing a very efficient

library. However, this data-driven approach posed diffi-

culties in obtaining sufficient environments for all

backbone-dependent subdivisions once the environments

were binned according to their u/w coordinates.

Here, we test a new version of the EBL, which we call

the backbone-dependent Energy-based Conformer

Library (bEBL). The bEBL was created in a backbone-

dependent fashion for the most populated regions of u/

w space, that is, those for which the sampling issue does

not occur. Although these regions represent only a small

minority of Ramachandran space, they contain a major-

ity of side chain conformation density, given the highly

uneven distribution of the population of the backbone

space. In a side-by-side comparison, we demonstrate that

the bEBL is more efficient than the already efficient EBL,

achieving similar or better performance with a much

smaller number of conformers. The comparison is per-

formed using three important parameters: (i) energy of

the predicted protein structures; (ii) correct prediction of

crystallographic side chain conformation; and (iii) reduc-

tion of computational time. Support for the bEBL is

implemented in the Molecular Software Libraries (MSL)

v. 1.2, a C11 open source library for molecular model-

ing, analysis, and design.38

MATERIALS AND METHODS

Structure database preparation

A collection of 2159 high-resolution X-ray structures

was obtained from the PDB and curated, as previously

described,30 using the following conditions: resolution

<2.0Å; deposition date: later than 01/01/1998; method:

X-ray diffraction; molecule type: protein (no DNA, no

RNA); no ligands. Hydrogen atoms were added with the

program Reduce,39 which also performed any necessary

rotation of the hydroxyl groups, flipping the side chain

of Asn, Gln, and His and determined the protonation

state of His to optimize hydrogen bonding (-BUILD -

ROTEX options). The three protonation states of His

were analyzed separately. The proteins were curated with

an automated procedure that rebuilt missing side chain

atoms, removed multiple side chain conformations, and

converted any main chain missing amino acids into

chain termini. All structures were then minimized with 3

cycles and 50 steps of adopted basis Newton Raphson

method using a harmonic potential with a force constant

of 100 kcal mol21 Å22 using CHARMM.17 A set of 480

proteins was reserved for testing.

Programs

All calculations (modeling, energy evaluations, confor-

mational analysis, SASA measurements, etc.) were per-

formed with programs implemented in MSL, a C11

object oriented software library for molecular modeling

and analysis.38

Input (unsorted) conformer library

The input fine-grained, unsorted conformer library

was the same used for the creation of the original EBL,

prepared as previously described.30 Side chains with a B-

factor� 40 and those with missing atoms in the original

structure were not considered. Conformers were RMSD

filtered by selecting them at random from a large pool

and adding them to the conformer list if they had an

RMSD >0.05Å from all other previously collected

conformers.

Selection of the backbone-dependent protein
environments

The positions in high-resolution crystal structures to

be used as environments for the creation of the con-

former library were selected as previously described,30
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except that the environments were subdivided according

to their backbone conformation. To ensure adequate

sampling, for each amino acid, only the 10� 3 10� sub-

divisions of u/w space that contained a minimum of 100

side chains were considered individually for the creation

of a sorted library. All the remaining sparsely populated

10� 3 10� subdivision were then combined and treated

as a single partition.

Calculation of the conformer/environment
interactions and creation of the energy
tables

For each amino acid type, the crystallographic side

chain of each of the M environments was remodeled as

each one of the N conformers and the conformer/envi-

ronment interaction energy was calculated, producing a

matrix of N 3 M energies. Energies were calculated as

described previously30 using the CHARMM 22 force

field17 (bond, angle, Urey-Bradley, dihedral, improper,

and van der Waals terms) supplemented by an explicit

hydrogen bond term from SCWRL 4.40 The non-bonded

interactions were calculated with a distance-dependent

cutoff using a switching function (cut-on 9Å, cut-off

10Å).

The N 3 M energy matrix was converted into an N 3

M boolean matrix in which a true value indicated that

an element’s energy was below a given threshold, and

thus the environment was satisfied by the conformer.

Because the best energy achievable in each environment

varied substantially, an environment dependent threshold

was adopted, as previously reported.30

Creation of the sorted bEBL

The fine grained conformer library was sorted by the

propensity of its elements to fit in the largest number of

natural environments, as described previously,30 but the

procedure was applied to each backbone partition inde-

pendently. The sorting procedure is schematically

explained in Figure 1. For each amino acid type, the

conformer that satisfied the largest number of environ-

ments was selected as the top conformer. All the envi-

ronments satisfied by the first conformer were marked

and no longer considered. The conformer that satisfied

the largest number of remaining environments was then

selected and the process was repeated. To avoid that the

environments are rapidly consumed by the procedure,

after each cycle of selection the threshold that deter-

mined if a conformer satisfies an environment was low-

ered. This brought back into consideration any excluded

environment that was no longer satisfied by any of the

previously selected conformers at the new, more strin-

gent threshold. The process was repeated until all con-

formers were sorted. The threshold was scaled down

linearly from its initial value to reach zero at the end of

the sorting process.

Sampling levels

A series of sampling levels was created as a means to

balance conformational sampling across amino acid types.

These were constructed from conformer/environment

interactions, as reported previously.30 For each amino

acid, the number of conformers that are necessary to sat-

isfy a certain fraction of environments constitutes a sam-

pling level. For example, eight conformers may be

required to satisfy 85% of the environments of a certain

amino acid: therefore the 85% sampling level (SL85) for

the amino acid would be eight conformers. Fourteen sam-

pling levels were created, from very sparse sampling (60%

level) to very high sampling (99% level). The sampling

levels were calculated independently for each u/w
partition.

Side chain prediction tests

Side chain optimization was performed on a test set of

480 proteins set aside for this purpose. All side chains

except Ala, Pro, and Gly were removed and simultaneously

predicted using both EBL and bEBL. His residues were

modeled according to the predicted protonation state. Side

chain optimization was performed with a variant of the

repackSideChains program updated to support the bEBL

library.30

Testing of the bEBL was performed against the

backbone-independent EBL. A comparison with other

libraries was reported previously,30 where we showed

that the EBL performs favorably compared to three state-

of-the-art rotamer and conformer libraries: a 53 expan-

sion of the 2010 version of the Backbone Dependent

rotamer library;28,40 the “medium” size library (0.5Å

RMSD) from Shetty et al.;29 and a small conformer

library from Xiang and Honig25 created from a database

of 297 proteins, 100% coverage and 40� tolerance.

Dihedral recovery

Assessment of the conformation prediction of crys-

tallographic side chains (side chain conformation

recovery) was performed with the getChiRecovery pro-

gram in MSL38 by matching the v1 and v2 of the

predicted and crystallographic structure with a toler-

ance of 40�. The analysis was performed on the subset

of buried side chains that had Solvent Accessible Sur-

face Area (SASA) below 25% of the maximum possible

SASA for the side chain reconstructed into Gly-X-Gly

backbone (with X being the amino acid type under

consideration).

Library format

The format of the library is illustrated in Supporting

Information Figure S1. The format is identical to that of

the original EBL, with the addition of the “BBDEP” tag,
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which marks the beginning of the conformer list relative

to each backbone bin. The library is available for down-

load at http://seneslab.org/EBL.

RESULTS AND DISCUSSION

Library creation procedure

The procedure followed for the creation and testing of

the bEBL is nearly identical to the procedure described

previously.30 The base was the same fine conformer

library that was sorted for the creation of the EBL. In

the present case, however, the protein environments were

subdivided in bins based on their backbone dihedral

angle (u/w) coordinates, and the library was sorted inde-

pendently for each bin.

The procedure is schematically summarized in Figure

1. The conformers were reconstructed within fixed pro-

tein environments (classified by their u/w bin) and the

interaction energies between the conformers and the pro-

tein environments were measured [Fig. 1(a)]. If a con-

former/environment interaction energy was below a

certain threshold, the conformer was considered to sat-

isfy the environment [green tick marks in Fig. 1(a)].

This resulted in a 2-dimensional boolean table [Fig.

1(b)], which was used to sort the conformers so that

those that were most efficient to satisfy protein environ-

ments would be ranked higher. First, the conformer that

satisfied the most environments was chosen as the top

element of the sorted library [Fig. 1(b)]. All the environ-

ments that were satisfied by this conformer were then

removed and no longer considered in the selection of the

next conformers [Fig. 1(c)]. This exclusion ensures that

each round selects complementary conformers that cover

different regions of side chain space [Fig. 1(c,d)]. How-

ever, to avoid having this procedure rapidly consume all

environments, the energy threshold that determines if an

environment is satisfied was increased after every cycle.

This allows for the excluded environments to be consid-

ered again if they are no longer satisfied by the previ-

ously selected conformers at the new, more stringent

threshold. The procedure produced a series of conformer

libraries sorted independently for each bin of backbone

conformational space.

Partitioning the protein backbone space

The major challenge for the creation of a backbone-

dependent energy-based library was the identification of

an effective strategy for subdividing the Ramachandran

(u/w) space. The subdivision should result in sufficient

data for each partition while at the same time capturing

the natural variation of rotamer propensity across the

backbone space. We tested a scheme based on dividing

the u/w space into 10� 3 10� bins, which was previously

used by Dunbrack and colleagues.28,36

To avoid over-fitting the training data during the sort-

ing procedure, we estimated that each 10� 3 10� parti-

tion should contain a minimum of 100 environments.

Therefore all 10� 3 10� partitions that contained at least

100 examples for each amino acid were collected for the

application of the EBL algorithm. Because the Rama-

chandran distribution is highly uneven, with small areas

of high density and large sparsely populated regions,

only a minority of all the possible 1296 (36 3 36) bins

contained sufficient environments, with a number rang-

ing from 27 for Val to only 4 for Cys (Supporting Infor-

mation Table SI). However, because the selected

partitions are highly populated, the scheme resulted in a

backbone-dependent library that, on average, covers 50–

60% of the effective side chain conformational frequency

for most amino acids, and as high as 70%, as in the case

of Ile. The remaining space that could not be assigned to

a 10� 3 10� bin was treated as a single large partition.

The partitioning schemes of Leu, Ile, Var, and Ser are

illustrated in Figure 2.

The bEBL library matches the natural side
chain bias of each partition

It is well established that rotamer frequency is strongly

biased by the conformation of the backbone.37 Figure 3

graphically illustrates how side chain preference varies

Figure 2
Partitioning scheme for four amino acids. The bEBL was computed for

regions of Ramachandran space that contained a sufficient number of
training environments. The 10� 3 10� individual partitions selected for

bEBL creation are in red, the remaining large partition is highlighted in
blue. The intensity of the colors is proportional to the probability of

backbone conformation. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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dramatically even between adjacent 10� 3 10� bins for

Leu and Ile. For example, the overall preferred rotamer

of Leu is [g-,t] (62%, represented in red in the figure),

but its local probability changes from 35% to nearly 80%

across three adjacent bins in the a-region (marked as 1,

2, and 3 in the figure). The change is roughly compen-

sated by the [t,g1] rotamer (green), which becomes pre-

dominant in bins 2 and 3. Similar changes are also

noticeable for the b-region (bins 4 and 5).

A similar phenomenon can also be observed for Ile in

Figure 3(b). The fraction of side chains in [g-,t] confor-

mation drops from 80% to 30% between the two adjacent

bins 1 and 2 in the a-region. Even more dramatic changes

are observable in the b-region (bins 3, 4, and 5): in par-

ticular, bin 5 is composed by over 95% of the rare [g1,t]

conformation (blue), which represents only 10% of the

total frequency of conformers in Ile (“Overall” bin).

We found previously that the composition of the top

conformers of the original backbone-independent EBL

closely matched the overall frequency observed in pro-

teins, a feature that is likely important for its effi-

ciency.30 This raised the question of whether the bEBL

would also mirror the dramatic changes in composition

of each individual 10� 3 10� bin. As shown in Figure 4,

this expectation was confirmed: the side-by-side compar-

ison between natural side chain conformational preferen-

ces and the composition of the top conformers of each

bEBL bin shows a remarkable correlation.

The bEBL requires fewer conformers for
comparable “sampling levels”

To evaluate the efficiency of the bEBL relative to the

original backbone-independent version, we first com-

pared the number of conformers required by their equiv-

alent “sampling levels.” The sampling level is a concept

that was introduced with the original EBL to balance

sampling for the various amino acids at all different

Figure 3
Side chain conformation is strongly dependent on backbone conformation. The stacked histograms show the distribution of side chain conforma-
tion in the entire PDB (all) and in five 10� 3 10� u/w bins, for Leu (a) and Ile (b). The colors of the bins in the Ramachandran graphs are a sum

of colors in the histogram (weighted by rotamer probability in the bin), and their opacity is proportional to the probability of backbone conforma-
tion. The probability of each rotamer is profoundly affected by the backbone, with important variation observed even between adjacent 10� 3 10�

bins.
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levels of granularity.30 Each amino acid type has a

unique geometry, number of atoms and number of rotat-

able bonds, and therefore, a different sampling require-

ment. For example, Val has a small side chain and

requires fewer conformers compared to the large and

flexible Arg. Therefore, to optimize sampling, it is neces-

sary to employ a different number of conformations for

each amino acid. The “sampling levels” help to rational-

ize and optimize this difficult decision by creating a

series of balanced libraries of increasing size to choose

from, depending on whether a calculation needs to pri-

oritize speed or maximize accuracy, and any compromise

in between. For example, in the original EBL, Arg, Leu,

and Val side chains are assigned 52, 9, and 3 conformers

respectively at the 70% sampling level (SL70). The num-

ber of conformers for the same amino acids increased to

102, 17, and 5 at the 80% sampling level (SL80), and to

222, 39, and 10 at SL90.

The sampling levels of the bEBL were created with the

same method, except that the number of conformers for

every sampling level is calculated independently for each

individual bin. The number of conformers in the sam-

pling levels of the bEBL can be taken as an initial indica-

tion of its performance: if the bEBL is more efficient

than the EBL, it is expected that it will require a smaller

number of conformers for the equivalent sampling levels.

As shown in Figure 5, this expectation was met. For

example, SL70 for Leu consists of nine conformers in the

EBL, but only four conformers are required by the bEBL

(weighted average across all bins) [Fig. 5(a)]. Similarly,

Figure 4
The bEBL captures the local rotamer distribution. Comparison of the probability of side chain conformation in crystal structures (“PDB”) and in

top conformers of the Energy-based Libraries for (a) Leu and (b) Ile. “Overall”: backbone-independent probability, compared to the original EBL.
Bin 1–5: side chain frequency in the 10� 3 10� u/w bins identified in Figure 3, compared to the corresponding bin for the bEBL. The composition

of the EBL and bEBL bins corresponds to the top conformers of the SL85 sampling level. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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the sampling requirements of the SL80 and SL90 levels

are also reduced in the bEBL, from 17 to 9 and from 39

to 23, respectively. A full comparison of the sampling

levels in the EBL and bEBL for all amino acids is

reported in Supporting Information Table SII.

The reduction in the number of conformers necessary

at each sampling level should translate into a substantial

decrease of the search space in side chain optimization

while preserving the quality of the outcome. Figure 5(b)

shows the combinatorial size of the overall search

space—the product of the number of conformers at all

positions—at different sampling levels. The data show

that the bEBL reduces the search space by 10 to over 30

orders of magnitude at the different sampling levels.

Although the speed of side chain optimization is gener-

ally not linearly proportional to the full combinatorial

size of the search problem, a reduction of the search

space is likely to result in significant performance

enhancements, as shown later.

bEBL leads to models with similar or lower
energy using fewer conformers

Side chain prediction is a search for the lowest energy

state of a structure; therefore energy is an important

parameter in estimating efficiency. Side chain prediction

was performed on the 480 proteins from the curated test

dataset, after removing the crystallographic side chains.

Figure 6(a) shows the comparison of the final energy of

each protein for side chain predictions performed at the

SL85 level, using either the bEBL (x-axis) or the EBL

(y-axis). Despite the fact that the bEBL is a smaller

library, the energies are similar, with most points lying

near the diagonal of the graph. In fact, the points in the

upper-left side of the graph (better bEBL energy)

Figure 5
The bEBL has smaller size for comparable sampling levels. (a) Com-
parison of number of conformers in each sampling level for EBL and

bEBL for Leu. The bEBL requires approximately half the conformers

as the EBL. (b) Logarithm of the combinatorial size of side chain con-
formational space for 480 full-protein predictions, that is, the product

of the number of conformers ni at each positions i of P total posi-
tions, normalized for a 100 amino acid protein: log(Pni

100/P). On

average, the bEBL reduces the combinatorial size by 11 (SL60) to 33
(SL95) orders of magnitude at the various sampling levels. [Color fig-

ure can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]

Figure 6
bEBL achieves similar energies with fewer conformers. Side chain opti-

mization was performed on a set of 480 test proteins using different
sampling levels. (a) Plot of the energies, after subtracting the energy of

the crystal structure, obtained from side chain optimization at the SL85
level using bEBL and EBL (along the x- and y-axis, respectively). The

fraction of proteins above the diagonal (better bEBL energy) and below

the diagonal (better EBL energy) is indicated in the lower left-hand cor-
ner. (b) Fractions of predicted protein models that had a lower energy

after side chain optimization with bEBL (red) and EBL (green) at six
sampling levels. The bEBL performs consistently better than EBL at all

sampling levels, in some case by over a 70%–30% margin. [Color figure
can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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outnumber those in the lower-right side (better EBL

energy) by a 4:1 ratio. Figure 6(b) shows this same ratio

for other sampling levels: in all cases the bEBL outper-

formed the EBL in a majority of the predictions, indicat-

ing that the smaller library is as efficient, if not more

efficient, than the larger, backbone-independent version.

bEBL achieves similar side chain
conformation prediction with fewer
conformers

The accuracy of side chain modeling can be measured

in terms of the percentage of predicted side chains that

are in agreement with the natural conformation observed

in a crystal structure. Figure 7 shows a comparison of

average side chain prediction accuracy in the 480 pro-

teins, using the EBL and bEBL at different sampling lev-

els (prediction of v1 and v2, with a tolerance of 40�

from the native structure).30 As expected, the percentage

of correct predictions increases with the sampling level

in both libraries, which is consistent with the expectation

that the use of more conformers would improve predic-

tion accuracy.25,29,32,33 At all sampling levels, the accu-

racy is similar and slightly better with the bEBL in spite

of its smaller size, demonstrating that the backbone-

dependent version is at least as effective, if not more

effective, in predicting side chain conformation.

bEBL reduces computational time

As discussed above, the bEBL matches or exceeds the per-

formance of the original EBL, both in terms of energy and

side chain conformation prediction, while using a smaller

number of conformers. The smaller size of the library

should in principle translate to a substantial reduction of

the computational time required for side chain optimiza-

tion. This expectation is confirmed by the results presented

in Figure 8, which shows the time taken for side chain opti-

mization using different sampling levels of the EBL and

bEBL. The average calculation time is shorter with the bEBL

compared to the EBL. The difference becomes more impor-

tant for higher sampling levels: for example, the bEBL is on

average 20% faster at SL80 and 34% at SL95.

When the black bars that correspond to the upper-end

of the 95% interval are compared, the improvements

become more noticeable, with speed increases of a factor of

2–4, depending on the sampling level. These slow runs cor-

respond to the side chain optimization problems that have

the highest complexity either because of the size of their

proteins or because their solution has the highest intrinsic

complexity. For this class of problems, clearly the utilization

of a leaner, more efficient library has the greatest pay-off.

CONCLUSION

We have presented a backbone-dependent bEBL that

further improves protein side chain optimization com-

pared to its backbone-independent version. The original

EBL already outperformed other state-of-the-art libraries,

as reported,30 therefore the bEBL is an extremely effec-

tive library. Our experiments further demonstrate that

accounting for the conformation of the backbone is a

very effective strategy for improving the outcome of side

chain optimization.35–37

We have shown that application of the EBL algorithm to

the most frequent 10� 3 10� regions of backbone confor-

mational space (which cumulatively account for 50–70% of

all side chain conformations) is sufficient to significantly

enhance the library. For these regions of Ramachandran

Figure 7
bEBL achieves comparable dihedral prediction with fewer conformers.

Percentage of buried side chains correctly predicted in the test set of 480

full-protein repacks at the respective sampling levels of the EBL (green)
and bEBL (red). A prediction is considered correct if v1 and v2 are close

to the values observed in the original crystal structure, with a tolerance
of 640�. In spite of the smaller size, the bEBL achieves similar or slightly

better prediction than the original EBL. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Figure 8
The bEBL reduces run time in side chain optimization. Distribution of
total run time of each of the 480 full-protein repacks at various sam-

pling levels, shown in logarithmic scale. White bar: average time. Box:
68% interval. Black bars: 95% interval. The bEBL reduces the average

run time by 20–30% at the various levels. The backbone-dependent

library is most effective at reducing run time for the slowest calculation
(upper black bar), which can run faster by a factor of 2–4, depending

on the sampling level. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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space, the composition of the bEBL closely mirrors the con-

formational bias of rotamer distribution to a level that

would be difficult to obtain with other traditional con-

former or rotamer libraries. The bEBL performs similarly,

or even slightly better, than the backbone-independent ver-

sion both in terms of energy and modeling accuracy, while

using a substantially smaller number of conformers. Utiliza-

tion of a smaller library can lead to reduction of computa-

tional overhead and execution time while preserving

quality. Alternatively, the more efficient bEBL can be used

to improve accuracy in side prediction without increase in

execution time. Therefore, the bEBL is an effective tool that

can improve performance in a variety of protein modeling

applications.
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