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INTRODUCTION

Generally stated, the goal of side chain optimization is

to identify the most favorable configuration of the side

chains for a given backbone. It is a fundamental compo-

nent of most protein structure prediction and design

applications. While the specific details may vary, side

chain optimization generally involves four key elements

(Fig. 1): (1) a backbone that provides a structural tem-

plate; (2) a side chain library that provides conforma-

tional freedom to the variable positions; (3) a set of

physical and/or empirical energy functions of statistical

derivation for scoring; and (4) a search strategy to

identify the lowest energy state among all possible config-

urations.

Side chain optimization poses a difficult challenge, as

the search space grows combinatorially with the number

of positions involved and their conformational freedom.

The side chain library is essential to transform what is a

continuum search space into a discretized problem for

which a number of powerful deterministic or stochastic

algorithms are available (such as Dead End Elimination,1

Branch and Bound,2 and Graph Theory,3 Monte Carlo,4

Self Consistent Mean Field5,6). It is important to remark

that the library is key to the quality of the outcome. This

is demonstrated in Figure 1. The theoretical target of the

optimization procedure is the global minimum of

the side chain conformational energy landscape, but the

landscape is sampled only in a finite number of loca-

tions, while the rest remains unknown. The ‘‘winner’’ can

approach the global minimum only if the correct side

chain conformations were provided by the library. There-

fore, the choice of a library predetermines—even before

the search is started—the best possible accuracy of the

procedure.
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ABSTRACT

Side chain optimization is a fundamental component of protein modeling applications such as docking, structural predic-

tion, and design. In these applications side chain flexibility is often provided by rotamer or conformer libraries, which are

collections of representative side chain conformations. Here we demonstrate that the sampling provided by the library can

be substantially improved by adding an energetic criterion to its creation. The result of the new procedure is the Energy-

Based library, a conformer library selected according to the propensity of its elements to fit energetically into natural pro-

tein environments. The new library performs outstandingly well in side chain optimization, producing structures with sig-

nificantly lower energies and resulting in improved side chain conformation prediction. In addition, because the library was

created as an ordered list, its size can be adjusted to any desired level. This feature provides unprecedented versatility in tun-

ing sampling. It allows to precisely balance the number of conformers required by each amino acid type, equalizing their

chances to fit into structural environments. It also allows to scale the amount of sampling to the specific requirement of any

given side optimization problem. A rotameric version of the library was also produced with the same method to

support applications that require a dihedral-only description of side chain conformation. The libraries are available at

http://seneslab.org/EBL.
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The most trivial way to increase accuracy would be

increasing the size of the library, and indeed, it has been

shown that high-sampling libraries can improve the out-

come of side chain optimization.7–11 Higher sampling,

however, comes at a significant computational cost as the

total number of states can easily reach an intractable

number of combinations. Another possible solution to

this problem is to adopt a continuous sampling of side

chain space. The trade off is reduced efficiency but meth-

ods such as minDEE (minimized Dead End Elimina-

tion)12–15 can be particularly suited for protein design

applications in which correct prediction of the landscape

global minimum is most critical. Nevertheless, library-

based sampling is still very popular because it is simple

to implement, it can be integrated with many algorithms

and offers a good balance between speed and accuracy,

which is essential, for example, when side chain optimi-

zation is repeated multiple times, such as in protein pre-

diction methods. The questions that we ask here are:

how do we improve the library accuracy without affect-

ing its efficiency? Or, for applications for which speed is

paramount, how do we improve the library efficiency

without affecting its accuracy? The answer to both ques-

tions is to identify, for any given size of the library, the

set of side chain conformations that will maximize its

performance, which is the goal of this work.

Currently, the majority of the libraries used for side

chain optimization are derivatives of statistical rotamer

libraries,16,17 such as the ‘‘Penultimate’’ library18 and,

most commonly, the backbone-dependent (BBD) library

of Dunbrack,19,20 which is still actively curated.21,22

These statistical libraries are based on the analysis of the

distribution of the amino acids’ v angles (the torsional

rotations around bonds), which are the main determi-

nants of side chain conformation. The rotamer libraries

define the clusters in torsional space, providing their av-

erage, dispersion and relative population. Figure 2(a)

plots the rotamers for an amino acid that contains v
angles exclusively between sp3 carbons (Leu) and one

with an sp2 carbon (Asn). The nine rotamers of Leu

cluster at combinations of the classical staggered confor-

mations, (near 2608, 1808, 1608). The nine theoretical

minima, however, are far from being evenly populated

because some of the rotamers are disfavored by local

conformational strains.20 The tight clustering displayed

by Leu side chains is not observed when the side chain

torsions involve an sp2 carbon, such as in the case of the

v2 dimension of Asn, and the density is more dispersed.

The adoption of a rotamer library allows to focus the

search only on the favorable regions of conformational

space. However, the rotameric wells are generally too

wide to be covered by a single conformation. Providing

sufficient sampling is indeed a critical issue for side chain

optimization because even small atomic clashes can pre-

vent a favorable solution from being identified.23,24 A

commonly implemented scheme to increase sampling is

Figure 1
The side chain library predetermines the best possible accuracy of a side chain optimization procedure. (a) The template and the energy functions

define a multidimensional landscape (here schematized in 1-D) whose dimensions are degrees of freedom of the side chains. The global minimum

of the landscape is the ideal target of the optimization. (b) The introduction of a side chain conformation library produces a grid that discretizes

the space. (c) The search algorithm can identify the grid point with lowest energy. Depending on the choice of library this point may lie near or far

from the global minimum of the entire landscape.
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to expand the main rotamers with a combinatorial addi-

tion of �1 standard deviations in the v1 and v2 dimen-

sions (for example, see Refs. 21, 23, 25, 26), resulting

into a nine-fold expansion of each rotameric center.

Alternatively, expansions can be produced such that the

addition of �1 standard deviations is operated in the v1

or in the v2 dimensions, producing the five-fold expan-

sion illustrated in Figure 2(a).21 While rational, such

expansion are in part arbitrary and do not consider the

fact that the relative populations of these regions can

range significantly, raising the question of what would be

the most effective strategy. For example, the relative den-

sity of the nine clusters of Leu ranges from as high as

63% of the total in one rotameric region (2608/1808
cluster) down to a mere 0.02% of density in the least

populated region (608/2608 cluster). A distribution of

sampling that somehow reflects this bias would likely be

beneficial.

An alternative approach to side chain conformational

sampling is the adoption of a conformer library.7,9 These

are collections of side chain conformations extracted

from high-resolution structures. They are created from

an exhaustive set of side chains that is reduced to a

desired number by removing conformers that are too

similar to each other using a filter based either on v
angle similarity9 or on root mean square deviation

(R.M.S.D.).7 The conformer libraries do not involve clus-

tering and expansion and are directly suitable for fine-

grained sampling, as they can be created in different sizes

by tuning the similarity filter. An advantage of conformer

libraries is that they retain variation of all degrees of free-

dom, including, bond distances and angles, in addition

to the dihedral angles. In particular, they capture any sys-

tematic bond angle variation occurring in sterically

strained rotameric regions, which can be large enough to

affect the energies.9 It should be noted, however, that the

application of a filter based on geometric similarity flat-

tens the differences between the most populated and the

rare regions. For example, while the Leu conformer

library illustrated in Figure 2 does not sample the very

rare 608/2608 rotameric region, its relative coverage of

the 2608/1808 (63%), 1808/608 (30%), 1808/1808 (2.6%)

and 2608/608 regions (0.7%) is not proportional to their

densities.

The rotamer and conformer libraries have been funda-

mental tools in protein modeling and design. Particularly

the seminal backbone-dependent library is at the core of a

number of modeling methods which have enabled impor-

tant achievements in prediction and design (for example,

see Refs. 1, 3, 26–32). Their continued development is im-

portant to improve accuracy and reduce run time when

applications require high throughput, high sampling, or

when side chain optimization is repeated multiple times in

concert with backbone motions. The expanded rotamer

libraries and the conformer libraries are both based on the

natural distribution of side chain conformations in pro-

teins. Both approaches greatly reduce the size of the search

space by providing good guidance on where sampling

should be allocated, excluding any regions of conforma-

tional space that are energetically unfavorable. The ques-

Figure 2
v1/v2 plot of an expanded rotamer library, a conformer library and the

Energy-Based conformer library. (a) a 53 expansion of the Backbone

Independent library in which each rotameric region has been evenly

enriched with subrotamers that vary by �1 S.D. in either v1 or v2

dimension. The figure shows the v1/v2 plot (black dots) for a side chain

with torsions between two sp3 carbons (Leu, 9 3 5 5 45 rotamers)

and one characterized by a sp2 carbon in the v2 dimension (Asn, 18 3

5 5 90 rotamers). The dots are overlaid on a color coded density map

of the side chain distribution in the structural database. (b) v1/v2

distribution for the same two amino acids in the mid-sized (0.5 Å

RMSD) conformer library of Shetty et al. Leu: 36 conformers. Asn: 48
conformers. (c) v1/v2 plot of the first 36 conformers of Leu and 48

conformers of Asn of the Energy-Based Library. The numbers are

chosen to allow a direct visual comparison with the SCL (b). In the

EBL the conformers are not evenly spaced but tend to cluster with a

bias that is similar to the conformational distribution observed in the

structural database. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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tion is up to what point the natural distribution of side

chain conformation can inform how to best prioritize

sampling within the rotameric regions, and what addi-

tional information could be used to improve the sampling

strategies. An important consideration in this regard is

that protein side chains are co-evolved with their environ-

ment to complement each other. Consistently, it has been

observed that the conformational preferences of the amino

acids in the structural database reflect primarily the inter-

nal steric constraints and local backbone interactions, and

only marginally the effects imposed by the surrounding

environment.33 On the other hand, in side chain optimi-

zation the backbone is generally fixed, the side chains only

have discrete mobility, and the structure is unable to

undergo those small movements that would relax any

minor clashes. Therefore, the primary factor that deter-

mines the probability that a given set of representative

conformers will contain a fitting solution are the interac-

tions of the side chain with the environment in which it is

reconstructed. It follows that in order to maximize their

chances of fitting, instead of using a pure geometric crite-

rion either in cartesian or torsional space, it would be

preferable to space the conformers evenly according to the

energetic impact of their motions i.e. the likelihood that a

motion would produce significant energy variation.

We hypothesized that the introduction of an energetic

criterion into the selection of the conformer library

would lead to more effective prioritization of sampling in

side chain optimization. The relationship between side

chain geometry and the energetic impact of their

motions is complex and difficult to derive analytically, as

they depend very specifically on their structures and the

degrees of freedom altered. As illustrated in Supporting

Information Figure S1, the energetic impact is related to

the number of atoms that are displaced and also to the

distance traveled by these atoms, which depends on their

distance from the axis of rotation. For example, v1 rota-

tions are likely to impact the energies more than v2 rota-

tions because they translate more atoms and for a further

distance. For the same reason, v1 rotations of the bulky

Trp are more likely to impact the energies than v1 rota-

tions of the smaller Leu. Therefore, it is clear that v1

should be allocated more sampling than v2, and that the

bulky Trp should be allocated more sampling than Leu.

The question is how much more? Here we address the

problem with a practical approach based on the analysis

of how an extensive library of conformers interacts with

a wide variety of natural protein environments. The data

is used to sort the conformers by their propensity to fit

(energetically) into protein environments. We have com-

pared the resulting library with three libraries from the

literature and observed important performance improve-

ments with the new approach, both in energetic terms as

well as side chain conformation recovery. The approach

also introduces a new beneficial feature: because the

library is sorted, the number of conformers can be

resized to any desired level of sampling. This feature pro-

vides unprecedented flexibility in adjusting, even dynami-

cally, the combinatorial size of the optimization to match

the precise needs and limits of a procedure.

MATERIAL AND METHODS

Structure database preparation

A collection of 2159 high resolution x-ray structures

was obtained from the Protein Data Bank (PDB) using

the following conditions: resolution <2.0 Å; deposition

date: later than 01/01/1998; method: X-ray diffraction;

molecule type: protein (no DNA, no RNA); no ligands.

The proteins were filtered to allow no more than 30%

sequence identity between individual chain. Hydrogen

atoms were added with the program Reduce,34 which

also performed any necessary rotation of the hydroxyl

groups, flipping the side chain of Asn, Gln, and His and

determine the protonation state of His to optimize

hydrogen bonding (-BUILD 2ROTEX options). The

three protonation states of His are referred here as His-d

(neutral, protonated on Nd1), His-e (neutral, protonated

on Ne2), and His1 (doubly protonated and positively

charged). The proteins were curated with an automated

procedure that rebuilt missing side chain atoms, removed

multiple side chain conformations, and converted any

main chain missing amino acids into chain termini. All

protein structures were then minimized with

CHARMM35 (using the CHARMM 22 potential), with 3

cycles and 50 steps of adopted basis Newton Raphson

method using a harmonic potential with a force constant

of 100 kcal mol21 Å22. Minimization was required for

two reasons. The bond lengths needed to be homoge-

nized because differences in refinement methods create

variability which is within experimental uncertainty but

sufficient to produce significant energy penalties. Mini-

mization can also resolve the occasional small clashes

that may occur in poorly refined regions of the crystallo-

graphic models. The minimization procedure was

selected to reduce these unwanted effects while preserving

the natural conformation observed in the crystallographic

models. The final RMSD of the crystallographic and

minimized models was on average 0.05 Å. The differences

in the side chain torsion angles are at most few degrees,

and it has been previously demonstrated that preminini-

zation of the structures has no significant influence on

side chain prediction.9 A typical example of crystallo-

graphic and minimized models is shown in Supporting

Information Figure S2.

Preparation of the fine grained (unsorted)
conformer library

A set of 1000 proteins was randomly selected from the

structural database for the creation of the conformer

An Energy-Based Side Chain Conformer Library
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library and the selection of the environments. All side

chains with a B-factor >5 40 and those with missing

atoms in the original structure were not considered. Any

side chain with a Ca to Ca distance below 8 Å from side

chains with missing density was excluded in the selection

of the environments. For each amino acid type, up to

5000 side chains were randomly selected as environments

(except Cys: 1614; Met: 4296; and Trp: 2734). One single

set of environments was selected for all protonation

states of His. Up to 25,000 side chains were set aside for

the creation of the initial (unsorted) conformer library.

The conformers were selected at random and added to

the conformer list if they had an RMSD >0.05 Å from

all other previously collected conformers (RMSD filter-

ing). A conformer library was created independently for

the three protonation states of His-d, His-e, His1. Each

conformer library was topped to 5000 conformers (except

Cys: 1780; His-d: 2906; His-e: 4221; His1: 542; and Val:

3916). Cys residues in disulfide bonds were excluded

from the analysis. For the creation of the rotameric ver-

sion (dihedral only) of the Energy-Based library, the

bond lengths and angles of the conformers were standar-

dized to the standard values from CHARMM 22 topol-

ogy prior to RMSD filtering. The remainder of the pro-

cedure followed was the same for both conformer and

rotamer versions of the library.

Calculation of the conformer/environment
interactions and creation of
the energy tables

The energy data used to derive the library was col-

lected in this phase. For each amino acid type, the native

side chain of each of the M environments was remodeled

as each one of the N conformers and their interaction

energy was calculated, producing a matrix of N3M ener-

gies. The side chain reconstruction was performed from

internal coordinates using the distance, the angle and the

dihedral angle relationships relative to three preceding

atoms (see Supporting Information Figs. S3 and S4). The

interaction energies included the internal interactions of

the side chain (including the bonded terms) and the

interactions of the side chain with all other atoms. The

energies were calculated according to the CHARMM 22

force field36 (bond, angle, urey-bradley, dihedral,

improper, van der Waals, and Coulomb electrostatics

with an R-dependent dielectric), plus an additional

hydrogen bond term as described in the program

SCWRL4.21 The nonbonded interactions were calculated

with a distance dependent cutoff of 10 Å, using a switch-

ing function (cut-on 9 Å, cut-off 10 Å). The calculations

were repeated with the van der Waals radii rescaled to 95

and 90% of their parameter 22 size. The table of energies

were computed in three different conditions: (1) with

full electrostatics and no hydrogen bonding term, (2)

with a full hydrogen bonding term and no electrostatics

and, (3) with electrostatics plus a hydrogen bonding

term, both rescaled to 50%.

The N3M energy matrix was converted into an N3M

boolean matrix in which a true value indicated that an

element’s energy was below a given threshold, and thus

the environment was satisfied. Because the best energy

achievable in each environment varied substantially, an

environment dependent threshold was adopted. The

threshold was calculated in the following way: first, the

best interaction energy in the row (all conformers in the

environment) was identified. All the elements of the row

were adjusted by subtracting the best energy. The distri-

bution of all the adjusted energy in the entire table was

plotted. As shown in Supporting Information Figure S5,

these distributions have a typical peak near the best

energy. This peak represents conformers that are near the

very best energy. The distance of the modal peak from

the minimum is thus indicative of the typical energy

spread of conformers that fit the environments favorably.

For this reason, we chose the mode of this peak as the

threshold to be added to the best environment energy.

For example, Arg displays a peak at 7.0 kcal mol21 from

the best energy, thus the threshold for each Arg environ-

ment was set 7.0 kcal mol21 above the best energy for

that environment.

Creation of the sorted energy-based library

The fine grained conformer library was sorted by the

propensity of its elements to fit in the largest number of

natural environments, creating the Energy-Based library.

The sorting procedure is schematically explained in Fig-

ure 3. For each amino acid type, the conformer that sat-

isfied the largest number of environments was selected as

the top conformer. All the environments satisfied by the

first conformer were marked and no longer considered.

The conformer that satisfied the largest number of

remaining environments was then selected and the pro-

cess was repeated. After each selection, however, the

threshold was lowered and made more stringent: if an

environment that was previously excluded was no longer

satisfied at the lower threshold, it was put back into con-

sideration. The process was repeated until all conformers

were sorted. The threshold was scaled down linearly

from its initial value to reach zero at the end of the sort-

ing process.

Preparation of the benchmark libraries

Three previously published rotamer and conformer

libraries of different sizes were selected for comparison.

The 53 expansion of the 2010 version of the Backbone

Dependent library21,22 (here referred as BBD53) was

built with standard bond lengths and bond angles from

CHARMM 22 topology. The rotamer library mean

rotamers were expanded by � 1 standard deviation in v1

S. Subramaniam and A. Senes
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or v2 but not in both dimensions simultaneously. This

led to a 53 expansion of amino acids with at least two v
angles, and 33 expansion of amino acids with a single v
angle. The dihedral relative to the hydrogen atom of

hydroxyl groups was sampled at the canonical 2608,
1808, and 1608 minima, each one expanded by �308 (9

total steps) for Ser and Thr, and every 458 (8 steps) for

Tyr. The expansion generated a total of 3,755 conformers

(Supporting Information Table S3). The two benchmark

conformer libraries selected were the ‘‘medium’’ size

library (0.5 Å RMSD) from Shetty et al.7 (here referred

as SCL) which contains 1547 conformers, and a small

conformer library from Xiang and Honig9 created from

a database of 297 proteins, 100% coverage and 408 toler-

ance, which contains 1134 conformers (here referred as

XCL). For consistency, and in particular to avoid any sig-

nificant differences in the bonded energies of the con-

formers, both conformer libraries were subjected to con-

strained minimization (conformers were built and mini-

mized in a Gly-X-Gly tripeptide).

Single side chain repack tests

Single side chain repack tests were performed on a set

of 2000 environments obtained from 700 proteins that

were set aside from the initial structural database for test-

ing purposes. The test is similar to the conformer sorting

procedure, in which the native side chain found in an

environment is remodeled into a conformer and the

interaction energies are calculated. Conformers were

defined to satisfy the environment by the condition pre-

viously explained. An environment was defined to be sat-

isfied by a set of n conformers if at least one of the ele-

ments satisfied the environment.

Complete protein repacks

Complete side chain repacks were performed on a sub-

set of 560 of the 700 proteins set aside for testing pur-

poses. All side chains were removed and predicted except

Gly, Ala, and Pro. His residues were predicted using in

the protonation state assigned by Reduce.34 The optimi-

zation was performed with the program repackSideChains

using a sequence of algorithms: first a run of Dead End

Elimination (DEE) using Goldstein single criterion37 was

used to reduce the combinatorial space. A round of Self

Consistent Mean Field (100 cycles, temperature 300 K)

was performed on the conformers that were not elimi-

nated during the DEE phase and the protein was set in

the resulting most probable state. Finally a Monte Carlo

simulated annealing procedure was run (50,000 cycles,

with exponential cooling from 1000 to 0.5 K). The struc-

ture with the lowest energy identified by the Monte Carlo

run was the final product of the optimization.

Analysis

Conformation prediction of the crystallographic side

chain conformation (side chain conformation recovery)

was performed by matching the v1 and v2 of the pre-

dicted and crystallographic structure with a tolerance of

Figure 3
Procedure for the creation of the Energy-Based conformer library. (a)

Each conformer of a fine-grained library of size N is built in each one

of M of environments that contain the same side chain type (Trp in the

figure) in protein crystal structures. The interaction energies of each

conformer in each environment are calculated and if the energy is

below a certain threshold, the conformer is considered a fit for the

environment (illustrated as a green check mark in the figure). (b) The

results are stored in a N3M boolean table. The number of

environments satisfied by each conformer is determined (number under

the table). The conformer that fits the largest number of environments

is the first to be selected (black arrow). (c) The environments that were

satisfied by the first conformer are no longer considered, and the

procedure is repeated to find the conformer that would satisfy the most

environments that are still uncovered. (d) The procedure is repeated

until completion. (e) The resulting library is compiled as a ranked list,

in which every additional element complements the previous. The

major advantage of ranking the conformers is that it allows the user to

truncate the library at any desired size, which is not possible with a
traditional conformer library. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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408. The analysis was performed on all side chains and

on a subset of buried side chains. A side chain was

defined buried if it had a Solvent Accessible Surface Area

(SASA) below 25% of the maximum possible SASA for

the side chain reconstructed into a Gly-X-Gly backbone

(with X being the amino acid type under exam). The

hydrogen bonding recovery was calculated as follows.

First, all side chain-to-side chain and side chain-to-back-

bone hydrogen bonds were identified in the native struc-

ture if they had nonzero energies using the explicit

hydrogen bonding function. A hydrogen bond was con-

sidered recovered if the interaction between the same do-

nor and acceptor had nonzero hydrogen bonding energy

in the predicted structure.

Programs

All calculations (modeling, energy evaluations, confor-

mational analysis, SASA measurements, etc.) were per-

formed with ad hoc programs written using MSL,38 a

C11 object oriented software library for molecular

modeling and analysis, which is freely distributed under

an open source license at http://msl-libraries.org. The

total protein repacks were performed with the program

repackSideChains, which is distributed with MSL.

RESULTS AND DISCUSSION

The energy-based conformer library

The Energy-Based library (EBL) is an extremely fine-

grained conformer library sorted by the propensity of its

elements to fit in a wide variety of natural protein envi-

ronments. The procedure used to derive the library—

explained in detail in the Methods section and illustrated

in Figure 3—is the following:

1. A very finely grained library of N conformers is cre-

ated for each amino acid type.

2. A large number M of environments that contain the

same amino acid type is selected at random from

high-resolution crystal structures.

3. The native side chain of each environment is remod-

eled into each of the conformers, and the interaction

energy between the conformer and the environment is

measured [Fig. 3(a)].

4. The data is collected in an N3M table of energies.

5. Each energy is converted to a boolean value, indicat-

ing if the environment is ‘‘satisfied’’ (True, if energy <
threshold) by the conformer, or not satisfied (False).

6. The conformer that satisfies the largest number of

environments is added to the library [Fig. 3(b)].

7. All environments satisfied by the conformer are

marked and no longer considered.

8. The threshold is lowered by a small amount. Any pre-

viously satisfied environment that would no longer be

satisfied at the new more stringent threshold is

brought back for consideration.

9. The procedure is repeated from #6 until all conform-

ers are sorted.

This procedure selects the conformers with the highest

propensity to energetically fit in environments that con-

tain the amino acid type in natural proteins. The first

conformer selected is invariably a conformer near the

center of the most populated region of side chain confor-

mational space. The second conformer complements the

first by covering another dense region, most often the

center of the second most populated cluster. Step 7 is the

key step that ensures this complementarity. Without step

7, the second and the other top conformers would most

likely be very close structural neighbors of the first pick.

By removing from consideration the environments satis-

fied by all previous conformers, the procedure ensures

that each element extends the coverage to new areas of

conformational space (the problem would be classified as

a classical Set Cover Problem in complexity theory). The

use of a variable threshold that becomes more stringent

at every cycle (Step 8) allows to sample further between

conformers as the library becomes larger.

The method is based on an energetic criterion for the

selection of conformers, but it also incorporates two

sources of natural conformational bias. The fine-grained

conformer library—albeit being ‘‘flattened’’ by the appli-

cation of a similarity filter—excludes any energetically

unfavorable regions of the conformational space. The

most important factor, however, are the environments.

They were randomly selected and not filtered, and thus

the environments reflect the natural conformational pref-

erences of the amino acids side chains they contained.

During the sorting process, the environments essentially

‘‘vote’’ for conformers, and are more likely to chose those

that belong to the same rotameric region of the side

chain they originally contained. A second important as-

pect that is likely to affect the selection process is how

tightly packed the environments are around their side

chain. The environments of surface exposed positions are

more likely to accommodate a variety of conformers, vot-

ing more indiscriminately than those that belong to core

positions. This aspect not only affects the selection of the

conformers, but as discussed later (in the ‘‘sampling

level’’ section) it also has important ramifications for bal-

ancing sampling between the various amino acid types.

Choice of energy functions

An important initial step in defining the procedure for

the creation of the library was to identify a good choice

of energy functions. All bonded terms (bond, angle, dihe-

dral, improper terms, from the CHARMM22 parameter

set36) were included to penalize conformers that are
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internally strained. The first function analyzed was the

van der Waals function. A common practice in side chain

optimization is to soften the repulsive component of this

function, reducing the negative impact of any small

clashes that may occur, under the rationale that they

would be readily relaxed by small side chain and back-

bone motions in a flexible protein structure. This is often

accomplished by the adoption of ad hoc functions and/or

by rescaling the van der Waals radii.24 Here we tested

whether the use of reduced radii was beneficial for the

creation of the library. The second issue tested was

related to the electrostatics, salvation, and hydrogen

bonding functions. These three inter-related forces are

notoriously difficult to model in side chain optimization

and their treatment varies widely between applica-

tions.21,39–44 The simple inclusion of partial charges

may not improve side chain prediction when the effect of

solvent are unaccounted for.9,39 Moreover, the hydrogen

bond—a key factor in predicting the structural organiza-

tion of protein folds and protein–protein interfaces—has

a complex geometry dependency and is not well modeled

by an integration of Coulomb and Lennard-Jones inter-

actions.44 To try to maximize the hydrogen bonding pre-

diction capabilities of the library we chose to test three

simple conditions: (1) pure coulombic interactions, (2)

an explicit hydrogen bonding function without the elec-

trostatic term, and (3) an equal weight of both terms.

We selected the hydrogen bonding function implemented

in the SCWRL4 program21 because it is based on ele-

ments of the CHARMM force field and has multiple

angle dependencies.

To test van der Waals radii rescaling, we created three

separate conformer libraries using 100% (full), 95% and

90% radii. We tested the libraries in a series of proce-

dures in which a single side chain was placed in fixed

protein environment (referred here as ‘‘single side chains

repacks’’). In the procedure we determine what percent-

age of the environments was satisfied by each truncation

of N conformers of the library (for N 5 1 to the size of

the library). A direct comparison of the performance of

the resulting libraries, performed under all three condi-

tions, that is, 100, 95, and 90% radii, revealed minor dif-

ferences and did not identify a significant advantage in

using rescaled radii. In the second test we found that the

repacking efficiencies were similar but the hydrogen

bonding recovery was higher when an explicit hydrogen

bond function was used without electrostatics. These

conditions were chosen for the remainder of the work.

The energy-based library

The Energy-Based library is a sorted conformer library

of up to 5000 conformers for each amino acid type,

except Gly, Ala, and Pro (Supporting Information Table

S1). The three protonation states of His were treated sep-

arately because they are chemically distinct (referred here

as His-d: neutral, protonated on Nd1; His-e: neutral,

protonated on Ne2; and His1: charged). A library of

5000 conformers per amino acid is exceedingly large but

the sorted list can be truncated to any desired number of

elements. Figure 2(c) shows a plot in v1/v2 coordinates

of the top ranking elements of the EBL library of Leu

and Asn. To allow a direct visual comparison with the

conformer library of panel b, the number of conformers

shown is identical. The EBL conformers are less evenly

spaced and have a higher propensity to sample the most

common regions, which is particularly evident in the

case of Leu. To illustrate the precise order in which the

conformers are ranked and how the algorithm initially

prioritizes sampling of the most populated area and

gradually extends coverage, Figure 4 shows a ‘‘walk’’

through the first 12 conformers of Trp. The first con-

former lands in the center of the 2608/908 region (35%

of the total density), which is sampled six times within

the first 12 conformers. The library then visits the second

most populated region (21808/908, 14% of the density)

and remaining conformers gradually extend sampling,

roughly in the order of the relative density of the clus-

ters. The structural superimposition of the first twelve

Trp conformers in Figure 4(b) shows how the conformers

complement their coverage of tridimensional space. Even

the closely spaced conformers that belong to the 2608/90

region are sufficiently shifted by v1 and v2 variations

(and in parts also by bond angle variations) to cover dif-

ferent portions of tridimensional space.

Selection of benchmark libraries for testing

To test the performance of the Energy-Based library we

selected three previously published libraries: (1) a 53

expansion of the Backbone Dependent rotamer library of

Dunbrack20,22 (BBD53); (2) a medium-size conformer

library from Shetty et al.7 (SCL, for Shetty Conformer

Library); and (3) a small conformer library from Xiang

and Honig9 (XCL). The benchmarks were chosen based

on their sizes, to compare the performance of the EBL

over a range of sampling levels. The Backbone Dependent

library is the most popular rotamer library in the litera-

ture. The expansion scheme adopted is the one imple-

mented in SCWRL4,21 in which ‘‘sub-rotamers’’ are

added by expanding either v1 or v2 by �1 S.D. but not

both at the same time (illustrated in Fig. 2). The version

of the BBD library adopted is the most recent,22 as it

demonstrated significant performance enhancement com-

pared to the previous version20 in our preliminary tests.

The BBD53 contains a total of 3755 conformers, which

were built with the bond lengths and bond angles

defined in the CHARMM 22 topology file. The SCL

selected was the intermediate possibility (0.5 Å R.M.S.D.

similarity filter), which contains a total of 1549 conform-

ers. The conformer libraries of Xiang and Honig are at

the core of SCAP and Jackal, a suite for modeling and
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analysis.9,41 Among the many possible sizes, we selected

the library derived from 297 proteins with 100% coverage

and 408 bins totaling 1136 conformers, which provided

the opportunity to test the EBL at a relatively low level

of sampling.

Performance test using single side chain
repacks

To test the performance of each individual amino acid

of the new library against the benchmarks we first per-

formed a series of single side chain repacks in fixed pro-

tein environment using a set of proteins that was set

aside for testing purposes. The results are shown in Fig-

ure 5. The histograms show the total number of EBL

conformers that are necessary to match the performance

of the benchmark library. The data was obtained in the

following way: for each individual amino acid we calcu-

lated the fraction of protein environments that was satis-

fied by at least one of the conformers of the benchmark

library and then we determined the number of EBL con-

formers that were necessary to satisfy the same fraction

of environments. In all cases the difference in perform-

ance is extremely significant. All across the three compar-

isons, the sampling requirements of the EBL are always

lower, often by a factor or 10 or more and always by at

least a factor of 2. These results demonstrate that the

EBL conformers have a high propensity to fit into pro-

tein environments that should be able to accommodate

the side chain, which was the original premise behind the

selection procedure. The next question was whether the

improved performance would also be observed in side

chain optimization procedures in which multiple side

chains are modeled at the same time.

Performance test using total protein side
chain predictions

We tested the Energy-Based library in a series of pro-

tein side chain prediction runs in which all positions in a

protein (excluding Gly, Ala, and Pro) were remodeled

using side chain optimization (referred here as total pro-

tein repacks). The scatter plots in Figure 7(a) compare

the final energies of a set of 560 proteins after optimiza-

tion with the EBL against the three benchmarks. In these

repacks the number of conformers for each individual

amino acid was exactly matched to the benchmark

library. In all comparisons the majority of the points lay

above the diagonal (97.3% against the BBD53, 88.8%

against the SCL, and 73.1% against the XCL), demon-

strating that the EBL is much more likely to reach lower

energy solutions. For ease of comparison, the energies

are plotted after subtracting the ‘‘crystal energy,’’ that is

the energy of the native structure after constrained mini-

mization. The crystal energy is used here solely as a con-

venient reference under the assumption that in many

cases—but certainly not in all cases—the minimized crys-

tal structure is devoid of strains and represents a good

target for an optimization. Panels b of Figure 6 represents

the same data of panel a in histogram form. This view

highlights the distribution of energies obtained with the

different libraries with respect to the crystal energy (zero

Figure 4
A ‘‘walk’’ in Trp space. (a) v1/v2 plot of the first 12 conformers of Trp overlaid on a color coded density map of the side chain distribution in the

structural database. The most populated region (2608/908) is sampled multiple times while the coverage gradually extends to the other regions of

density. (b) Structural representation using the same color coding of panel a. The figure demonstrates how the conformers are arranged to cover

complementary regions of tridimensional space.
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value). In the three sets of calculations the EBL fares

well, with a number of solutions below the crystal energy

(87.3%, 70.8%, 32.0%) that is significantly higher than

the respective benchmarks (BBD53 13.3%, SCL 10.3%,

and XCL 1.0%, respectively). The modes of the energy

distributions are shifted by hundreds of kcal/mol com-

pared to those of the benchmarks. It should also be

noted that even at the lowest level of sampling (1136, the

same number of conformers of the XCL) the EBL pro-

duces a number of proteins below crystal energy that is

greater than the larger SCL (1549 conformers) and the

BBD53 (3755 conformers). The data demonstrates that

the introduction of an energetic criterion in the creation

of the conformer library greatly enhanced the energetic

performance of the library in side chain optimization.

Sampling levels

In the first performance test, the number of conform-

ers of the Energy-Based library was matched exactly with

the respective benchmark library. However, since the

number of conformers can be adjusted to any desired

number, it is possible that the optimal distribution of

sampling between the various amino acid types could be

different. We addressed this question using data from the

single side chain repacks against fixed protein environ-

ments. We determined the number of conformers that

are required to satisfy a certain percentage of protein

environments in the test set. This led to the creation of a

series of ‘‘sampling levels’’ which, at least in principle,

should provide each amino acid type with an equal

chance to fit into protein environments. We created 14

levels, from very sparse sampling (282 total conformers

in the 60% level) up to very high sampling (6985 con-

formers in the 99% level). The percentage refers to the

number of environments that are energetically satisfied

by the set of conformers in single side chain repacks.

These levels will be referred as SL60 (Sampling Level

60%) to SL99. The number of conformers in each sam-

pling level is reported in Table I. The balance within each

level is consistent with the expectation that larger amino

acids would require more sampling than smaller amino

acids. A second factor that presumably contributes is the

propensity of an amino acid type to occur in tightly

packed positions (which likely require more sampling)

versus solvent exposed positions (which can be satisfied

by a larger variety of conformers). A substantially larger

number of conformers is given to amino acids with

hydroxyl groups compared to other amino acids with

similar structure (for example, Thr vs Val, and Phe vs

Tyr), an indication that a significant amount of sampling

is required to satisfy hydrogen bonding.

Complete protein repacks using the EBL
sampling levels

The total repack tests of the same set of 560 proteins

were repeated using the sampling levels. The results are

shown in Figure 7(c,d). Since the number of conformers

for each individual amino acid is no longer matched to

the benchmark libraries, to ensure a fair comparison we

Figure 5
Performance test on single environment repacks. The figure compares

the number of conformers that are required for equivalent performance

between the Energy-Based library and three benchmark libraries

(BBD53: 53 expansion of the 2010 backbone-dependent library; SCL:

a medium conformer library from Shetty et al.; XCL: a medium

conformer library from Xiang and Honig). The number of conformers

of the benchmarks is a fixed number (blue bar). We determined the

fraction of environments that are satisfied by at least one of these

conformers. The red bar represents the number of EBL conformers that

are required to satisfy the same fraction of environments. For example,

the XCL has 334 Arg conformers, which satisfy 55.0% of Arg

environments. It takes only 19 conformers of the EBL to satisfy at least

the same fraction. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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Figure 6
Performance of the Energy-Based library in total protein repacks. (a) The scatter plots graph the final energy after optimization of all side chains in

560 proteins, for the Energy-Based library (EBL, x axis) and three representative rotamer and conformer libraries (see Methods). The majority of

the points lie above the diagonal indicating that the EBL on average achieves better performance that the benchmarks. For easier comparison

energies are plotted after subtracting the energy of the minimized crystal structure. (b) Representation of the same data as histograms. The dashed
line separates the proteins that score better than the crystal energy (percentages indicated), a convenient reference under the assumption that in

most cases it represents a good target for an optimization. In a and b the calculations were made with an equal number of conformers compared to

the benchmark for each amino acid type (equal sampling). The BBD53 has 3,755 conformers, the SCL 1,549 and the XCL 1,136. Panels c and d

report the results of the same calculation performed using EBL sampling levels of similar total complexity of that of the benchmarks. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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matched the total combinatorial complexity of the search

space, that is the product of the number of conformers

given to each position. The total combinatorial complex-

ity of each optimization was calculated for the bench-

mark library, and the same protein was repacked with

the largest EBL sampling level that did not exceed the

benchmark’s total complexity. It should be noted that

this criterion always puts the EBL at a disadvantage—at

times minimally, at times significantly—ensuring a strin-

gent test. The most frequently selected levels were (in

order of frequency) the SL95, SL96, and SL92.5 against

the BBD53 library, the SL85, SL87.5, and SL82.5 against

the SCL, and the SL80, SL75, and SL82.5 against the

XCL. This discussion will refer to this strategy as ‘‘sam-

pling levels’’ and to the previous strategy, in which

benchmark and EBL were equally matched, as ‘‘equal

sampling.’’

Optimization with the sampling levels produced a sig-

nificant improvement of the energies in the comparisons

against two of the three libraries, the BBD53 and XCL.

In the comparison against the BBD53 library, the frac-

tion of proteins below the crystal energy increased from

87.3% to 91.8%. This improvement can be appreciated

visually by comparing the frequency of proteins just

above zero energy in Figure 6(b,d). The most significant

improvement was found in the comparison against the

smallest of the three libraries, the XCL. In this case the

number of proteins below crystal energy almost doubled,

going from 32.0% to 57.5%. The introduction of sam-

pling levels was not as beneficial in the test against the

SCL (the number of proteins below crystal energy

increased from 70.8% to 72.0%). It should be noted,

however, that the adopted strategy to compare with the

‘‘equal sampling’’ puts the ‘‘sampling levels’’ strategy at

disadvantage and likely contributes for this small

improvement. This can be appreciated by comparing the

total size of the most commonly used sampling levels.

The main sampling levels used against the SCL (SL85,

SL87.5, and SL82.5 levels, with 1231, 1464, and 1039

conformers, respectively) are all smaller in size than the

size of the ‘‘equal sampling’’ strategy (1549 conformers).

In fairness, it should also be noted that the overall size

of the BBD53 can be reduced by excluding the most

rare rotamers from the library.3,21 If this filtering is

applied to maintain at least 99% of the cumulative den-

sity, the total complexity of the BBD53 in total repacks

decreases approximately to the same level of the SCL.

The application of a 90% filter reduces the BBD53 to

approximately the XCL complexity. If we compare the

energetic performance of the EBL at the reduced sam-

pling levels of the SCL and XCL [Fig. 7(d), center and

right panels, red areas] against the full-size BBD53 [Fig.

7(d), left panel, green area] we observe, however, that the

smaller size EBLs still maintain a significant edge against

the full size BBD53. This advantage is likely in part due

to the fact that with the EBL some representation of

these rare areas can still be maintained while sampling is

gradually reduced, while with a transitional rotamer

library entire rotameric regions need to be completely

removed.

Recovery of crystal structure conformation

After establishing that the Energy-Based library per-

forms well in total protein repacks from an energetic

stand point, we investigated if the performance translated

Figure 7
Recovery of the crystallographic side chain conformation in total

protein repacks. Recoveries obtained with the EBL are compared to (a)

the BBD53, (b) the SCL, and (c) the XCL. The data is expressed as

v11v2 recovery with a tolerance of �408 for buried side chains (<25%
SASA). The orange bar represents the recovery in repacks made with an

equal (eq) number of conformers compared with the benchmark for

each amino acid type. The red bar represents the recovery in side chain

optimizations made using an EBL sampling level (lev) of similar

complexity with respect to the benchmark. With very few exceptions,

the EBL performs better than the benchmark, often significantly. In

Supporting Information Figure S6 the data is dissected by v1, v11v2,

v11v21v3, v11v21v31v4 recoveries. The data relative to all

positions, independently of burial, is shown in Supporting Information

Figure S7. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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to improved prediction of side chain conformation. Fig-

ure 7 shows the recovery of the side chain crystallo-

graphic conformations in the 560 total repacks (buried

positions only, v11v2 recovery, with a tolerance thresh-

old of 408). In the conditions tested the EBL recovers on

average nearly 80% of all side chain conformations, rang-

ing from about 55% (Ser) to 90% (Phe, Tyr, and Val). In

all three comparisons, the EBL performs better than the

relative benchmark, by 18% against the BBD53 library,

by 16% against the SCL, and by a substantial 118%

margin against the smaller XCL. The use of sampling lev-

els (EBL-lev) resulted in a slight improvement of the

recoveries compared with ‘‘equal sampling’’ (EBL-

eq).Comparing the performance of the EBL in the three

trials, it is remarkable that the total v1/v2 recovery is al-

ready high at the lowest sampling levels (78.8% recovery

in the test against the XCL) and does not further grow

substantially (79.4% against the SCL and 80.3% against

the BBD53). In comparison, the energies significantly

improved at every increase of sampling size (Fig. 6). This

is an interesting finding that suggests that the lowest

sampling levels could be effective in side chain optimiza-

tion, particularly if used with a softened van der Waals

function. The R.M.S.D. analysis of the repacked struc-

tures compared to the native structures provides further

confirmation that the EBL achieves superior performance

in side chain prediction. The R.M.S.D. obtained with the

EBL is significantly lower than that observed with the

benchmarks (1.55 Å to 1.85 Å, Table II) even at the low-

est sampling level (1.38 Å). The data relative to v1/v2 re-

covery of all side chains (independently of burial) is

shown in Supporting Information Figure S7. As expected

the average recovery drops significantly compared with

the buried positions (66% for all three tests) but the

overall trend remains similar.

Figure 8 examines the hydrogen bond recovery in the

protein repacks. The figure reports the fraction of the

hydrogen bonds present in the original structure that

were correctly predicted. In the three tests, the Energy-

Based library recovers between 47% and 60% of the crys-

tallographic hydrogen bonds. Unlike the v1/v2 recoveries,

here we observed an improvement as sampling increases

(47.5%, 52.5%, and 60.0% against the XCL, SCL, and

BBD53, respectively). It should be noted that while not

all hydrogen bonds are correctly predicted, the total

number of hydrogen bonds in the repacks exceeds that of

the crystal structures (Supporting Information Fig. S8),

which is likely a consequence of the absence of solvent

(implicit or explicit) in the calculations. Once again, the

new library’s performance demonstrated to be outstand-

ing. Compared with the benchmarks, the total recovery

was higher by 112% (BBD53), 115% (SCL), and

125% (XCL), an improvement that is even more marked

than what is observed for the v1/v2 recoveries. Although

in all three tests the total recovery is very similar for the

‘‘equal sampling’’ and ‘‘sampling levels’’ strategies, at the

level of the individual amino acids there were noticeable

differences.

Overall the three measures—energy, side chain confor-

mation recovery, and hydrogen bond recovery—depict an

Table II
Average Root Mean Square Deviation of Total Repacks Compared with

the Native Crystal Structure

Benchmark EBL, equal sampling EBL, sampling levels

BBD53 1.63 � 0.36 � 1.38 � 0.35 � 1.35 � 0.33 �
SCL 1.55 � 0.32 � 1.41 � 0.36 � 1.37 � 0.33 �
XCL 1.85 � 0.34 � 1.48 � 0.34 � 1.38 � 0.33 �

The table reports the average RMSDs (� standard deviation) between the pre-

dicted side chains of each protein and the native crystal structure. The set

includes only buried side chains (<25% SASA) and all atoms (heavy and hydro-

gen atoms).

Table I
Suggested Sampling Level

Level ARG ASN ASP CYS GLN GLU HIS-da HIS-ea HIS1a ILE LEU LYS MET PHE SER THR TRP TYR VAL Total

60% 27 16 12 3 7 8 14 11 3 4 6 4 12 30 3 4 43 72 3 282
70% 52 28 22 4 13 18 28 20 5 7 9 7 19 48 6 7 66 126 3 488
75% 73 38 31 6 19 28 39 26 6 9 13 10 25 60 8 10 83 167 4 655
80% 102 51 43 7 27 41 52 37 9 11 17 16 33 76 13 13 111 222 5 886
82.5% 123 60 49 8 33 50 63 44 10 13 21 21 39 87 16 16 126 254 6 1039
85% 149 70 59 9 40 61 76 53 13 16 26 26 47 100 21 20 144 294 7 1231
87.5% 177 83 70 11 49 73 95 63 17 20 32 34 57 116 27 27 164 341 8 1464
90% 222 100 86 16 61 90 121 76 22 26 39 44 72 138 34 34 196 408 10 1795
92.5% 273 122 106 21 77 111 152 94 30 35 52 58 93 169 43 44 237 487 13 2217
95% 354 154 138 32 106 144 226 125 44 50 70 81 126 214 57 62 298 613 16 2910
96% 397 173 152 39 121 163 293 150 51 60 82 94 144 242 65 74 340 687 19 3346
97% 449 201 173 48 143 182 424 172 71 78 98 111 176 278 74 89 382 767 22 3938
98% 498 227 201 71 177 215 649 255 89 108 124 132 206 342 88 108 430 838 28 4786
99% 589 292 231 100 233 261 1107 569 140 165 183 184 281 428 111 152 663 1252 44 6985

The table reports the suggested number of conformers for each amino acid type at different sampling levels. The levels have been obtained by matching the efficiency of

repacking single side chain environments. For example, the top 27 Arg conformers satisfy on average 60% of Arg protein environments, and 589 are required to satisfy

99% environments. The top 16 and 292 conformers of Asn provide roughly the same chances to satisfy Asn protein environments.
aThe conformers of His are created separately for the three protonation states, indicated here using the following naming convention: HIS-d, protonated in Nd1; HIS-e,

protonated in Ne2; HIS1, doubly protonated, charged.
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extremely favorable portrait of the Energy-Based library.

The library displays superior performance in side chain

optimization across a range of sampling levels. This effi-

ciency, combined with its unique flexibility in rescaling

sampling, means that the library can be a powerful and

versatile tool that can be tailored precisely to improve

quality and/or decrease run time in side chain optimiza-

tion procedure.

Analysis of a sampling level

The three sets of total protein repacks demonstrated

that increase in sampling produces substantial decrease

of the energy. The 14 sampling levels proposed here,

from SL60 to SL99, vary in the total number of conform-

ers by a factor of 25 (Table I). To gain more precise in-

formation on their relative efficiency, we performed a se-

ries of total repacks systematically at each individual level

on a random subset of 40 proteins. Figure 9 summarizes

the results of this trial. In the figure the highest level

(SL99) is chosen as the reference. The histograms shows

the number of protein that reached an energy within a

threshold of 2, 10, or 20 kcal mol21 from the energy

obtained with the SL99. The data indicates that to obtain

approximately a 50% chance that a protein energy is

within 50 kcal mol21 of its SL99 energy, one should

adopt at least the SL90 level (1795 conformers). At the

SL95 (2910 conformers) about half of the proteins are

within 10 kcal mol21 from the best level. To obtain the

same proportion below the 2 kcal mol21 threshold the

levels required are the SL97 (3938) or the SL98 (4786

conformers). The most important observation, however,

is that the levels display a continuum and relatively

smooth increase in performance. Although it is likely

that an intensive analysis of performance based on total

protein repack data would lead to the creation of even

more effective levels, the data demonstrates that the pro-

posed levels based on single side chain repacks are a suit-

able option.

An energy-based rotamer library

The method used for the creation of the Energy-Based

conformer library can also be applied for the generation

of a dihedral-only rotamer library. To create this library

we standardized the bond lengths and angles of the

Figure 8
Recovery of the crystallographic hydrogen bonds in total protein

repacks. Recoveries obtained with the EBL are compared to (a) the

BBD53, (b) the SCL, and (c) the XCL. The data indicates if a hydrogen

bond present in the original crystal structure is recovered after side

chain optimization. Any hydrogen bonds that are observed in the

repacked structure but are not present in the original structure were not

considered. The EBL demonstrated significantly better recoveries in all

three cases. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 9
Comparison of the energetic performance of the EBL sampling levels.

Forty proteins were repacked at each of the 14 proposed levels (from

SL60 to SL99). The figure shows the number of proteins that had an

energy below the energy of its SL99 optimization plus a threshold of 2,

10, or 50 kcal/mol. The results demonstrate a gradual increase in

performance between the levels. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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extremely fine grained library, and followed the same

procedure (RMSD filtering, rebuilding in protein envi-

ronments, energy-based sorting). Figure 10 shows a com-

parison of the performance of the Energy-Based Rotamer

library (EBRL) against the BBD53 library. Although the

performance of the EBRL is significantly decreased with

respect to the conformer version, the rotamer version

compares favorably against the benchmark. The EBRL

scores better energies in 89.4% of the proteins compared

to the BBD53 library. The percentage below crystal

energy drops from 91.8% to 35.8%, but it remains signif-

icantly higher than the benchmark. The average side

chain recoveries also drop (Supporting Information Fig.

S9) but they still compare favorably against the bench-

mark. The data indicates that the conformers approach is

substantially more effective than the use of rotamers.

Nevertheless, the Energy-Based Rotamer library can be a

useful alternative for applications that could benefit from

the efficient and flexible sampling offered by an energy

sorted library but require the use of a dihedral-only

rotamer representation.

CONCLUSIONS

We have presented a new type of conformer library for

protein modeling that introduces a number of innova-

tions in side chain sampling. The library is in essence a

sorted fine-grained conformer library. The library is so

large that it needs to be trimmed down for most practi-

cal purposes, although an application that requires

extremely precise positioning and is not of highly combi-

natorial nature could benefit from its exhaustive sam-

pling. The method for sorting the Energy-Based library

takes into account not only the conformational propen-

sities of the side chains but also the nature of protein

environments that host them. The selection of the con-

formers was made with an energetic criterion, under the

hypothesis that using the same metric that selects the

‘‘winner’’ in a side chain optimization procedure would

lead to a more efficient distribution of sampling. The

results demonstrate that the strategy indeed provides im-

portant performance improvements.

The fact that the library is sorted and can be resized to

any desired number represents per se a unique and im-

portant new feature. It introduces an unprecedented level

of versatility in adjusting conformational sampling to

match the specific needs of a modeling procedure. It

allows to control the quality of the outcome and to meet

any speed or memory requirements. The scalability of

the library is also important for balancing the relative

amount of sampling given to the different amino acid

types and equalize their chances to fit in spaces that

should accommodate them. Here we propose a series of

sampling levels that gradually increase the library’s gran-

ularity while maintaining the mentioned balance. The

versatility of the library can also be an important asset

for developing more effective side chain sampling strat-

egies. We have recently shown that that transferring sam-

pling from positions that are likely to be satisfied by a

variety of conformers (such as a relatively isolated solvent

exposed position) to those that require a conformer from

a very narrow and specific range (such as a tightly

packed core position) can improve the economy of the

calculation and the resulting energies.45 The scalability

of the EBL enables this and other similar strategies,

opening new avenues for further improving performance

in side chain optimization.

Figure 10
Performance of the Energy-Based rotamer library (EBRL) in total

protein repacks. (a) The scatter plots and (b) histograms representation

of the final energy after side chains optimization of 560 proteins, for

the Energy-Based rotamer library compared to the BBD53 library.
While the performance of the rotameric version of the Energy-Based

library is decreased compared to the conformer library (Fig. 6), it

represents an efficient alternative for applications that required a

dihedral-only representation of the library. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Compared with the current libraries, the EBL achieves

significantly lower energies in side chain optimization.

This is certainly a positive finding as it indicates that

the EBL is very effective in exploring the energy land-

scape (Fig. 1). For this reason the library could aid the

continued development of effective energy functions for

protein prediction and reduce the need for artificial

softening of the van der Waals function.16,24,46 The

fact that the EBL was tested with the same energy func-

tions used for its creation may raise a concern that the

performance could be in part due to over-training of

the libraries to perform well with these specific func-

tions. It is therefore important to note that the native

structure recovery parameters tested—specifically the di-

hedral prediction, the hydrogen bonding recovery and

the RMSD with the native structure—all improve along-

side with the energies, indicating that the library cap-

tures well the physical aspects that determine side chain

conformation in proteins. More tests will be necessary

to understand how performance will be affected when

the library is used with different energy functions. Our

functions were selected specifically to favor efficient

packing, hydrogen bonding and to prevent strains,

which are factors that are present in a majority of mod-

eling programs, and thus we are confident that the

enhancement will translate well when the library is used

with different functions. While nothing prevents the

users from modifying their programs to adopt a set of

functions similar to ours, should that be advantageous,

we also encourage others to adopt the method to create

specific Energy-Based libraries optimized ad hoc with

the energy functions used in their own applications. A

tutorial on how to create a library is made available on

the EBL web site (http://seneslab.org/EBL) and all soft-

ware and databases required for building a similar

library are freely provided. The Energy-Based library

and the dihedral-only version are distributed as supple-

mentary information and in our website. The format of

the library is described in Supporting Information Fig-

ure S4. All software used to create the EBL, the modules

for reading the library, building conformers from inter-

nal coordinates, and for performing side chain optimi-

zation are implemented in C11 using the MSL pack-

age38 (http://msl-libraries.org), a suite of molecular

modeling tools freely available for download under an

open source GPL v.3 license.
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